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Abstract— Manipulation tasks often require a robot to adjust
its sensorimotor skills based on the state it finds itself in. Taking
peg-in-hole as an example: once the peg is aligned with the hole,
the robot should push the peg downwards. While high level
execution frameworks such as state machines and behavior
trees are commonly used to formalize such decision-making
problems, these frameworks require a mechanism to detect the
high-level symbolic state. Handcrafting heuristics to identify
symbolic states can be brittle, and using data-driven methods
can produce noisy predictions, particularly when working with
limited datasets, as is common in real-world robotic scenarios.
This paper proposes a Bayesian state estimation method to
predict symbolic states with predicate classifiers. This method
requires little training data and allows fusing noisy observations
from multiple sensor modalities. We evaluate our framework on
a set of real-world peg-in-hole and connector-socket insertion
tasks, demonstrating its ability to classify symbolic states and
to generalize to unseen tasks, outperforming baseline methods.
We also demonstrate the ability of our method to improve the
robustness of manipulation policies on a real robot.

I. INTRODUCTION

Solving robotic manipulation tasks robustly under percep-
tion uncertainty is a challenging problem. State estimation
methods seek to solve this problem by predicting the ground
truth state of the environment from noisy observations [1–
4]. A typical state representation is object poses [5–9],
which are continuously estimated and then used to guide the
robot’s motion, e.g., for aligning the end-effector with a door
knob. However, less attention has been paid to estimating
high-level symbolic states, such as whether the door knob is
locked or the door is fully shut. Perception of such symbolic
states contributes to the robot’s functional understanding
of the environment and can help decide when a sub-task
has succeeded, whether a failure has occurred, and what
action to execute next [10]. As the core building block of
high-level execution models, symbolic state representations
are widely used in state machines, behavior trees [11], task
planners [12], and Robust Logical-Dynamical Systems [13].

A common approach to estimating symbolic states is
using hand-tuned thresholds as transition conditions [14].
For example, a state machine for placing a mug on the table
might involve lowering the mug until the robot senses a force
exceeding 2N at its end-effector, at which point the robot
would open its gripper. However, this approach is brittle and
prone to failure. If the detected force exceeds 2N due to
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Fig. 1: We propose a symbolic state estimation method with predicates
for manipulation tasks. Predicate classifiers, trained with a small dataset,
detect symbolic attributes from multimodal sensor inputs. The noisy
classifier outputs are then fed to a Bayesian state estimator to predict
symbolic states. The execution trajectory illustrated here shows our method
applied to a connector insertion task using a predefined set of manipulation
primitives. The symbolic state estimator decides when to transition between
primitives and identifies failure states. Top: the representative frames in
each symbolic state overlaid with the image, position, velocity, and force
signals (with RGB lines representing XYZ axes). Bottom: the estimated
probability distribution over the symbolic states.

sensor noise or unforeseen disturbances while the mug is in
free space, the robot might open its gripper and drop the mug.

Kappler et al. [15] proposed a data-driven approach
for symbolic state estimation. They introduced a Bayesian
framework that can combine observations from multiple
sensor modalities and detect failures. However, as the state
classifiers are trained for each state in the task-specific state
machine, this method is hard to scale to unseen tasks and
failure cases. Haarnoja et al. [16] proposed using a virtual
neural network sensor to encode high-dimensional images to
low-dimensional vectors. They train this embedding end-to-
end by supervising the posterior estimate of a Kalman filter
and differentiating through the recursive update rules. While
this differentiable filter has shown promising results with
continuous states [17], it has not yet been applied to discrete
symbolic states. We will demonstrate that a straightforward
adaptation of differentiable filtering to symbolic states under-
performs when data is limited and costly to acquire, which
is common in real-world robotic manipulation tasks.



In this work, rather than reducing high-dimensional
observations to symbolic states directly, we propose
reducing to the space of predicates: atomic binary properties
such as above(a, b) or near(a, b) that compose symbolic
states. We then learn the noise characteristics of the
predicates and use this information to perform Bayesian
inference on the symbolic states. There are two main benefits
for using predicates as the intermediate representation. 1) As
predicates are binary, learning predicate classifiers is easier
than learning multi-class state classifiers, thus requiring less
data. Further, these atomic predicate classifiers, if trained
on a diverse dataset, are generalizable to unseen tasks in the
same task family. 2) Since predicates are modular, they can
be composed and shared between tasks; adding or removing
states from the state space does not require retraining all
the predicate classifiers.

Our core contribution is a data-efficient Bayesian frame-
work to perform symbolic state estimation using predicates,
handling high-dimensional, multi-modal observations. We
evaluate our framework on the peg-hole and connector-
socket insertion tasks from National Institute of Standards
and Technology (NIST) Assembly Task Board I [18] (see
Fig. 1). We collected and labeled a relatively small amount of
observations from 120 open-loop policy executions across 8
different tasks, and compared methods in two ways: accuracy
of offline symbolic state estimation and success rate of online
closed-loop policy execution. Experimental results indicate
our method achieves the highest state estimation accuracy
and task completion rate, outperforming other baselines.

II. RELATED WORK

A. Bayesian State Estimation

Bayesian state estimation is commonly used to estimate
continuous states, including robot and object poses,
given noisy observations such as range data [1–4]. While
performing state estimation with RGB images can be difficult
due to their high dimensionality and sensitivity to lighting
conditions, recent works have proposed differentiable
filtering [17], which uses neural networks to encode images
to lower dimensional vectors. These methods embed the
recursive Bayesian estimation algorithms (e.g., Kalman [16],
histogram [19], and particle filters [20]) into the neural
network architecture, enabling end-to-end learning for visual
state estimation. [21] further built upon differentiable filter-
ing to perform sensor fusion. While differentiable filtering
has shown promising results for continuous pose estimation
where state transitions are continuous, it has not yet been
studied extensively for symbolic state estimation, where state
transitions are sparse and discrete. [10] applied differentiable
histogram filtering to estimate a categorical variable. This
variable stays constant throughout an episode, and thousands
of simulated demonstration runs were collected to train
the filter without finally demonstrating it on real data. We
show in our experiments that differentiable filtering is not
as effective for symbolic state estimation when the amount
of training data available is limited—120 runs in our case.

B. State Estimation for Assembly Tasks

State estimation has been applied to assembly tasks in
prior works primarily using force data [5–7]. [8] and [9]
fuse visual observations with force data to track part poses,
but both methods rely on manually defined image features
such as line or blob detectors. All these methods adopt
particle filtering to estimate the hole position. However,
a significantly large number of particles is required to
handle the nonlinear contact dynamics, making this class
of methods computationally expensive, sometimes too slow
to run in real time [22]. We assume that a search strategy
can find the hole with high probability given a rough
initial guess of its position, as in [23]. Then, we aim to
estimate high-level states such as “on-surface” and “fallen”
to determine which high-level action to execute and when.

[24, 25] proposes to leverage both pose- and wrench-based
trajectory features to identify failure states for assembly.
However, they rely on predetermined time intervals to switch
between high-level states during task execution. The most
relevant work to ours is [15], which proposes a Bayesian
symbolic state estimation framework based on force signals
and visual data in the form of tracked object positions.
However, [15] directly trained symbolic state classifiers for
each state in a task-specific state machine. This limits the
data reuse across tasks and requires model retraining from
scratch for novel tasks, objects, and sensor modalities. In
contrast, we introduce predicates as the intermediate repre-
sentation, which improves data efficiency and allows better
generalization.

C. High-Level Failure Recovery

One benefit of performing state estimation on high-level
states is the ability to recover from high-level failures, such
as the peg falling off the contact surface. [15] proposes
to use a Support Vector Machine for failure classification,
which runs in parallel with their state estimation module
and interrupts with a recovery state machine when failures
are identified. [26] also proposes a separate failure detection
module, but their recovery is handled by a model-free policy
trained via expert demonstration. Our framework, on the
other hand, includes failure states in the main state space,
which unifies the state and failure classification problems
into one integrated pipeline.

III. BAYESIAN SYMBOLIC STATE ESTIMATION

Symbolic states abstract away geometric information and
characterize the functional properties of the environment,
such as whether two objects are aligned, whether an object
is open or closed, etc. We aim to learn a symbolic state
predictor that is robust to sensor noise and can handle
high-dimensional observations such as images with a
minimal amount of training data, suitable for real world
robotics applications. Once learned, the state estimator can
be used to close the loop on any high-level execution model,
including state machines, as demonstrated in Sec. VI-C.

Inspired by [16], we build on Bayesian state estimation
with virtual sensors to encode high-dimensional observations



to low-dimensional vectors. To achieve better data efficiency,
we propose training the virtual sensors to output binary
predicates rather than an implicit representation of symbolic
states learned end-to-end. The predicates—as used in the
Planning Domain Description Language (PDDL) [12]—are
defined as binary atomic properties composing symbolic
states. After learning virtual sensors for predicates, we then
fit generative observation models, e.g., Gaussian Mixture
Models (GMMs), to the sensor outputs. The generative
models help smooth out prediction errors from the noisy
predicate sensors. Although we choose GMMs in our
implementation, we leave optimizing the model choice to
future work while focusing on the framework design and
process integration. The two-step training process outlined
above allows us to obtain robust symbolic state estimators
for high-dimensional observations, while requiring only a
small robot-environment interaction dataset.

A. Domain Specification

The domain for our Bayesian framework can be described
by the 6-tuple 〈S,Φ, A, T,Ω, O〉, where S is the set of
symbolic states, Φ is the set of predicates that compose the
symbolic states, A is the set of actions, T is the set of state
transition probabilities, Ω is the set of observations, and O
is the set of conditional observation probabilities.

B. Belief States

A belief state represents the agent’s estimate of the
symbolic state as a probability distribution over the states.
At each time step, we can update the belief state b (s) with

b (s) ∝ O (o | s, a)
∑
sprev

T (s | sprev, a) b (sprev) , (1)

where sprev, s ∈ S are unobservable symbolic states, a ∈ A
is the action performed at sprev to transition to s with
probability T (s | sprev, a), and o ∈ Ω is the observation
received at s. We estimate T (s | sprev, a) and the prior
belief state b(s0) from state visit counts in the training
data. The conditional observation probability O (o | s, a)
can be difficult to compute with traditional estimation
methods without a parameterized distribution, since it
requires normalizing over the entire observation space. To
circumvent this issue, we use binary predicate classifiers as
an intermediate representation, serving as a virtual sensor
to reduce the dimensionality of observations.

C. Virtual Predicate Sensors

Predicates φ ∈ Φ define binary properties of
objects, usually summarizing geometric information,
such as inside(a, b) to indicate that object a is
inside b. Symbolic states s ∈ S are defined as sets
of predicates {φs1, φs2, · · · , φsKs}, where Ks is the
number of predicates determined by s. For example,
the symbolic state representing when a robot manipulator
has fully inserted a peg into a hole could be sinserted ≡
{inside(peg, hole),¬above(peg, surface)}.

We train virtual predicate sensors as binary classifiers
hφ(o) that each outputs a noisy estimate of the probability

that predicate φ is true. The symbolic state s can
then be inferred from noisy “virtual observations”
[hφs

1
(o), hφs

2
(o), · · · , hφs

Ks
(o)].

Symbolic states do not need to specify the truth value of
all predicates. Given a ground truth state s, we thus train the
predicate sensors with a variant of the cross entropy loss:

L =

Ks∑
k=1

φsk log hφs
k
(o) + (1− φsk) log

(
1− hφs

k
(o)
)
. (2)

Rather than computing the cross entropy for all the
predicates, we only compute it for the predicates whose
truth values are determined by the ground truth state s. In
practice, this can be implemented by using a boolean mask
{0, 1}|Φ| to mask out predicate predictions for predicates
not determined by s.

D. Virtual Predicate Observation Models

If a virtual sensor does not output parameters for a
parameterized probability distribution, the observation
probability O (hφ(o) | s, a) needs to be normalized
over its outputs hφ(o). [19] suggests approximating this
normalization step with sampling, which is computationally
expensive. If the virtual sensors are trained to output
categorical variables, as is the case with our predicate
sensors, then one could also approximate the normalization
by summing over the categorical variables [10]. Using this
approximation, however, discards information contained in
the continuous probabilities output by the predicate sensors.

For example, suppose a noisy predicate sensor outputs
hφ ∼ T N (0.2, 1) when φ = false and hφ ∼ T N (0.4, 0.3)
when φ = true, where T N denotes a normal distribution
truncated within [0, 1]. If we discretize the sensor outputs
into two bins, (hφ < 0.5)⇒ (φ = false) and (hφ ≥ 0.5)⇒
(φ = true), then observing hφ = 0.4 leads to predicting
φ = false, since hφ < 0.5. However, the predicate is more
likely to be true, since 0.4 is the mean of hφ when φ = true.

To capture the fidelity of continuous predictions without
resorting to sampling, we represent the observation model
with GMMs fit to the virtual predicate sensor output logits:

O (hφ(o) | s, a) = GMMs,a (log hφ(o)) . (3)

Because GMMs are parameterized probability
distributions, the normalization over the observation space
can be computed in closed form. Fitting the GMMs over
the same dataset used to train the predicate classifiers could
result in overfitting, so we instead use the validation set.

E. Sensor Fusion

We follow the conventional approach in Bayesian state
estimation to integrate observations from multiple sensors.
Each sensor observation is considered conditionally inde-
pendent given the state and action, and thus the conditional
observation probability O (o | s, a) is computed as the
product of all observation probabilities O (osensor | s, a).



In our framework, there is one virtual sensor per predicate,
so the set of sensors is equivalent to the set of predicates:

O (o | s, a) =
∏
φ

O (hφ(o) | s, a) . (4)

To integrate virtual predicate sensors from multiple phys-
ical sensor modalities, we can simply define a predicate for
each sensor modality. For example, suppose we want to iden-
tify a symbolic state where the robot end-effector is in con-
tact with a surface from both visual and force observations.
We can introduce two predicates, visual-in-contact
and force-in-contact, and define the contact
symbolic state to be the conjunction of these two predicates
{visual-in-contact,force-in-contact}.

IV. PREDICATE CLASSIFIERS

In this section, we describe our choice of predicate
classifier architectures. However, our proposed framework is
agnostic to the classifier implementation; the only require-
ment is that the classifier outputs a value between 0 and 1.

A. Motion and Force-based Classifiers

To minimize the amount of data required to train
classifiers for motion and force-based predicates, we use
logistic regression on a set of handcrafted features. For
example, to detect the predicate in-contact(a, b), we
can simply use the force magnitude as a feature. It is
possible to train neural networks to classify the predicates
without handcrafted features [10], but the predicates for our
real-world task are simple enough that doing so would be
unnecessary and perform worse in generalization given our
small dataset, as we show in the experiments with the state
classification baseline. The classifier performance is shown
in the top four rows of Table I.

B. Image-based Classifiers

For image-based predicate classification, we adopted
SimCLRv2 [27] with a ResNet-50 model [28] as
the backbone network, and added a linear layer on
top for predicate classification. We chose SimCLRv2
as it has been shown to be effective for fine-tuning
classifiers by augmenting small datasets with random
image transformations. The network is pre-trained on
ImageNet [29], and the linear layer is fine-tuned on our
collected dataset of 47, 752 images collected over 120 policy
execution runs across 8 tasks. We use random cropping
and color distortion for data augmentation. The classifier
performance is shown in the bottom five rows of Table I.

V. REAL WORLD ENVIRONMENT

A. NIST Insertion Tasks

To evaluate our Bayesian symbolic state estimation
framework, we apply it to the insertion tasks on the NIST
Assembly Task Board I [18]. We use a subset of the
insertion tasks, illustrated in Fig. 2: four connectors (D-sub,
RJ45, USB, and waterproof) and four pegs (8x7 rectangle,
12x8mm rectangle, 12mm round, and 16mm round). The

Predicate Acc. Prec. Recall
motion-force-axis-aligned(a, b) 0.96 0.97 0.98
motion-force-dropping(a) 0.99 0.91 0.58
motion-force-fully-inserted(a, b) 0.92 0.97 0.6
motion-force-in-contact(a, b) 0.97 0.96 0.98
visual-above(a, b) 0.95 0.93 0.92
visual-below(a, b) 0.85 0.95 0.84
visual-fallen(a) 0.99 0.98 0.99
visual-fully-inserted(a, b) 0.94 0.93 0.79
visual-inserted(a, b) 0.84 0.63 0.93
Overall 0.95 0.93 0.92

TABLE I: Predicate classifier test scores. The simplicity of the atomic
predicates allows the classifiers to achieve high test accuracy even with a
small train set.
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Fig. 2: We evaluate our framework on 8 connector insertion tasks on
the NIST Assembly Task Board I. We use a state machine with a set
of predefined manipulation primitive skills to perform the task, such as
Lissajous search (right) to find the connector hole.

task board is rigidly mounted on a worktable, as shown in
Fig. 1. Our hardware system consists of a Kuka IIWA7 arm,
Robotiq Hand-E gripper, ATI Mini45 ForceTorque sensor,
and wrist-mounted Basler acA1920-50gc camera.

B. Insertion Task Domain Specification

Here, we detail the domain specification for the insertion
tasks, i.e., the 6-tuple 〈S,Φ, A, T,Ω, O〉 introduced in
Sec. III-A. We define the predicates to maximize the
individual classifier performance of each sensor modality.
While designing such predicates may not be straightforward
for all manipulation tasks, we assume it is intuitive and
unchallenging in a wide range of tasks, including insertion.

1) States S: See Fig. 3
2) Predicates Φ: See Fig. 3
3) Actions A: i) Prepare: position the peg above the hole

for insertion; ii) MakeContact: move the peg down until
touching the surface; iii) Search: perform Lissajous search to
find the hole (Fig. 2); iv) Insert: push the peg into the hole.

We implement these four actions using an impedance
controller with different gain matrices (KP and KD),
reference pose (x), velocity (ẋ) and feed forward wrench
(Fff ) profiles:

τ = −JT (KP (x− xd) +KD(ẋ− ẋd) + Fff ), (5)

where τ is the control torque and J is the Jacobian.
4) Transitions T : Computed from collected trajectories.
5) Observations Ω: 3D positions, 3D velocities, 3D

forces, and 500× 500 RGB images.
6) Observation Models O: Provided by the learned pred-

icate classifiers and GMMs as detailed in Secs. III and IV.
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Fig. 3: Symbolic states in insertion tasks and the corresponding predicate
values. We define predicates to maximize the performance of each sensor
modality. For example, it is easy for an image classifier to detect when
a peg is positioned above or below the hole surface, but a motion and
force-based classifier cannot easily tell without exact information about the
surface height. One could choose to simply use a 1-to-1 mapping between
states and predicates, but defining more nuanced predicates can simplify
the classification problems and improve the overall performance.

VI. EXPERIMENTS

We aim to investigate the following three questions
in the experiments. First, we examine if introducing
predicate classifiers boosts the symbolic state estimation
performance. Second, we evaluate how well the state
estimators generalize to unseen tasks of the same family.
Third, we inspect whether the state estimators can improve
the performance of a high-level manipulation policy by
closing the loop on high-level states.

A. Offline State Estimation

1) Experiment Setup: For each insertion task, we execute
10–20 trial runs with a predefined open-loop policy that
uses manually tuned motion and force-based thresholds to
complete each task. Specifically, the four actions (Prepare,
MakeContact, Search, and Insert) in Sec. V-B are chained
sequentially with duration limits. We then manually label the
symbolic states for the collected observations and use these
ground truth labels to evaluate the accuracy of four state
estimation methods: 1) our proposed method using predicate
classifiers (Pred), 2) a baseline trained to classify the sym-
bolic state directly (State), 3) a differentiable filter adopting
the categorical normalization strategy in [10] (Filter), and 4)
the predefined open-loop policy with manually tuned motion
and force-based thresholds (Manual). We also perform an
ablation study on the different sensor modalities to evaluate
the impact of sensor fusion (Pred-Image, Pred-MF, State-
Image, State-MF). We fuse sensor modalities in State by
concatenating the learned features from each modality and
feeding them to a multi-layer perceptron (MLP). We fuse
sensor modalities in Filter by summing the conditional
observation logits for each modality, analagous to Eq. 4.

For all methods except Manual, we perform 5-fold cross
validation using train-validation-test splits of (0.6, 0.2, 0.2).
To train the SimCLR image classifiers, we resample
the dataset so it contains an equal number of samples
from each symbolic state. Because sampled images are
randomly perturbed during SimCLR training (Sec. IV-B),
duplicating samples from rare symbolic states does not
cause overfitting. Since differentiable filters are trained on
fixed-length sequences of observations, we train Filter by
sampling sequences of length 10 while ensuring that each
symbolic state s appears in at least 1

|S| of the training
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Fig. 4: Offline evaluation of the state estimation methods. Left: the test
accuracy computed via 5-fold cross validation (except Manual, which
requires no training). Right: the F1 score averaged across symbolic states;
this metric particularly reflects the classification performance on the short
duration states. Our method (Pred) performs the best on both metrics.

sequence set. All the images in one sequence undergo the
same random SimCLR transformation. The models for all
baselines are trained for 10 epochs with batch sizes of 64
using the same training hyperparameters.

2) Offline Results: As shown in Fig. 4, our method (Pred)
achieves the highest accuracy (0.92) and best F1 score aver-
aged across all the states (0.67). The F1 score indicates how
well the state estimator classifies short duration states, such
as ALIGNED (when the connector drops slightly into the
hole), which lasts less than 0.5 seconds. These short states
are crucial for insertion tasks—if the state estimator misclas-
sifies the ALIGNED state, it may continue infinitely search-
ing even if the connector is already aligned with the hole.

The fact that Pred outperforms State (0.81) in accuracy
indicates that state estimation with the proposed binary pred-
icate classifiers is more robust than with a direct multi-class
symbolic state classifier. We also observe this performance
gain when comparing the sensor ablations, (Pred-MF vs.
State-MF) and (Pred-Image vs. State-Image).

Filter achieves a relatively high accuracy (0.85) but a low
F1 score (0.53), indicating that it underperforms in classify-
ing short duration states. A likely cause is the data imbalance
of state occurrences. Although all short duration states are
resampled and guaranteed to appear in at least 1

|S| of the
training sequence set, the long duration states co-occur with
those resampled sequences, leading to an overall domination
by frames of long duration states. For Pred and State, on the
other hand, the states are balanced at the frame granularity,
rather than the sequence level, thus circumventing this issue.

The sensor modality ablations (Pred-Image, Pred-MF,
State-Image, State-MF) all achieve lower accuracy and
F1 scores than their corresponding combined versions
(Pred, Force), indicating that fusing the sensor modalities
increases reliability. The intuition is that motion/force and
image signals often provide complementary information. For
instance, force signals cannot distingiush between FALLEN
and SEARCHING, while image-based SimCLR excels
at this. Meanwhile, SimCLR struggles at distinguishing
between ONSURFACE and ALIGNED, where the motion
and force-based classifier shines. This is illustrated in
Fig. 1, where the wrist camera images for ONSURFACE
and ALIGNED are almost identical, but the velocity profiles
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Fig. 5: Generalization performance of the state estimation methods to unseen
tasks. Both plots show the average result across all 8 unseen tasks. Pred out-
performs all other methods except Pred-MF, which demonstrates the benefit
of using predicates for generalization. Meanwhile, image-based predicates
are more challenging to generalize when trained on a limited dataset.

are significantly different. Our proposed Bayesian estimator
fuses multiple modalities by weighing their importance
according to the individual classifier noise characteristics.

B. Generalization to Unseen Tasks
1) Experiment Setup: In this experiment, we test the

generalization ability of the state estimators to unseen tasks.
To do so, we train each model on data collected from 7 of the
8 tasks and then test on the 8th task. We perform this test for
each task with 3-fold cross validation. Since Manual requires
no training, its results are the same as those in Sec. VI-A.

2) Generalization Results: As demonstrated in Fig. 5,
Pred achieves higher accuracy and F1 scores than State,
Filter, and Manual. The accuracy of Pred (0.80) decreases
by only 0.12 compared with Fig. 4, where the method was
trained on all the tasks. By contrast, the accuracy of State
(0.38) drops by 0.43. This drastic difference in accuracy
indicates that state estimation with predicates offers stronger
generalization to unseen tasks than direct state classification.

Among the predicate-based methods, Pred-MF achieves
the best generalization performance. The reliability of Pred-
MF on novel tasks suggests that it may be feasible to learn
generic motion and force-based predicates across tasks in the
same task family, e.g., connector-socket insertion. However,
we expect weaker generalization for image-based predicates
if not trained on a sufficiently large and diverse dataset, as
indicated by Pred-Image in Fig. 5. Thus, we recommend
using the trained predicate classifiers as a warm-start and
further fine-tune on data collected from the novel task.

C. Online Closed-Loop Policy Execution
1) Experiment Setup: In this experiment, we integrate the

state estimation methods with the connector insertion policy
to close the high-level control loop; i.e., the state machine
transitions are governed by the state estimates. We evaluate
the four main methods (Pred, State, Filter, and Manual) on
the three most error-prone insertion tasks (D-sub, USB, and
RJ45) [18]. We assess the task success rate of each method
on each connector over 20 trial runs with varying hole posi-
tions within ±2 mm along all axes. For this experiment, we
fine-tune the previously trained models with a subset of the
dataset only containing the given insertion task using train-
validation splits of (0.75, 0.25), as suggested in Sec. VI-B.
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Fig. 6: Online evaluation of the state estimation methods. Left: the average
success rate across the 3 tasks (D-sub, USB, RJ45). Right: the number of
successes out of 20 trials for each task. Only Pred is able to outperform
Manual on all tasks.

The most common failure modes of the open-loop
insertion policy include 1) the connector falling off the hole
mount during SEARCHING, and 2) failing to detect the
transition when the connector is ALIGNED with the hole.
The state estimation methods can improve the performance
of the predefined insertion policy by detecting these states
and taking the appropriate high-level actions (e.g. resetting
with a small perturbation or switching to insert). We enforce
an execution time limit such that the state machine is
terminated as a failure if it runs for more than one minute.

2) Online Results: The results are presented in Fig. 6,
with demonstrations of policy executions provided in the
supplementary video. Pred achieves the highest success rate
in all 3 tasks, 0.72 on average. It is also the only method that
consistently outperforms Manual for every task, demon-
strating the promising performance gains by integrating our
proposed estimator with an existing open-loop policy. Two
most common failure modes of Pred include 1) when the
connector keeps falling off the hole mount after new resets,
reaching the execution time limit, and 2) when SEARCHING
takes too long to find the hole, leading to time out. There
are few failures due to misclassification by Pred, and we
leave optimizing low-level execution policies to future work.

Filter fails in all trials of the D-sub task because it cannot
detect when the connector is ALIGNED with the hole and
keeps searching even if the connector is fully inserted. This
again confirms our earlier hypothesis on its inability to
handle short duration states such as ALIGNED.

VII. CONCLUSION

This paper presents a Bayesian framework that uses
binary predicate classifiers to estimate high-level symbolic
states from high-dimensional sensor modalities in a data-
efficient manner. This method outperforms other baselines
such as direct symbolic state classification, differentiable
filtering, and manually defined thresholds. We demonstrate
with a real-world connector insertion task that symbolic
state estimation can improve the performance of high-level
policies by detecting and recovering from failures and
deciding state transitions. Although we apply our method
to state machines, symbolic state estimators could easily
be used with other high-level execution models such as
behavior trees and task planners.
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