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Abstract

We present a Bayesian approach for jointly learning distance metrics for a large
collection of potentially related learning tasks. We assume there exists a rela-
tively smaller set ofbasis distance metricsand the distance metric for each task
is asparse, positively weighted combination of these basis distance metrics. The
set of basis distance metrics and the combination weights are learned from data.
Moreover, taking a nonparametric Bayesian approach, the number of basis dis-
tance metrics need not be seta priori. Our proposed construction significantly
reduces the number of parameters to be learned, especially when the number
of tasks and/or data dimensionality is large. Several existing methods for multi-
task/transfer distance metric learning arise as special cases of our model. Prelimi-
nary results on real-world data show that our model outperforms various baselines.
We also discuss some possible extensions of our model and future work.

1 Introduction

Computing distances between data points is a key step in manyproblems such as classification, clus-
tering, and ranking. In many cases, the standard Euclidean distance is not appropriate andproblem-
specificdistance functions are deemed more suitable. Distance metric learning [14, 1] algorithms are
appealing in such cases as they allow learning data-driven distance metrics. Specifically, the distance
between two data pointsxi andxj is defined asd =

√

(xi − xj)⊤A(xi − xj) whereA is aD ×D
positive semi-definite matrix denoting the distance metric. Distance metric learning algorithm try to
learn the “right” distance metricA, given a set of constraints (pairwise similarities/dissimilarities,
or relative preferences) provided as a form of supervision.

Often, we are interested in solving not just one butT > 1 learning tasks and wish to learnmultiple
distance metricsA1, . . . , AT (one per task). Since the tasks could possibly be related, itis desir-
able tojointly learn these distance metrics in order to share statistical strengths across the multiple
learning tasks, especially when the amount of training dataand/or the number of distance-based
constraints known for each task is small. This has been the motivation behind some recent meth-
ods fortransfer/multitaskdistance metric learning [10, 17, 16, 18]. However, the task-relatedness
is usually unknowna priori. It is beneficial to learn the task-relatedness while jointly learning the
distance metrics for the multiple tasks.

In this paper, we present a Bayesian approach to the multitask distance metric learning problem.
Our proposed approach is appealing due to several reasons. Firstly, our approach discovers the task-
relatedness and allows a proper sharing of statistical strength among the multiple learning tasks.
Secondly, the Bayesian formulation naturally provides a full posterior distribution over the distance
metrics [15], rather than a point estimate, which gives the solution more robustness against overfit-
ting when the amount of training data is small.

Specifically, our proposed formulation expresses the distance metric of each task as asparse
weighted combination of a set ofbasisdistance metrics (intuitively, the degree of similarity oftwo
tasks would be proportional to the number of basis distance metrics they share). Note that this is
akin to a sparse coding [6, 8] of each task-specific distance metric using the elements from adistance
metric dictionary. The sparse code for each task as well as the distance metric dictionary will be
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learned from data using a nonparametric Bayesian approach.Our model allows incorporating both
strictly pairwise (similar or dissimilar) as well as relative preference (e.g., triplets) based constraints.

2 Bayesian Multitask Distance Metric Learning

We assume that we are givenT tasks, with their corresponding distance metrics denoted as
A1, . . . , AT . We further assume that eachD × D distance metricAt can be written as a sparse,
positively weighted combination of a small set ofK basis metricsM1, . . . ,MK , plus an off-
setM0 shared by all the tasks. EachMk, k = 0, . . . ,K, is assumed to be a symmetric posi-
tive definite matrix, which is further assumed to be a low-rank matrix of the formBkB

⊤

k where
Bk ∈ R

D×L with L ≤ D. Specifically, the taskt distance metricAt is modeled as follows:

At =

K
∑

k=1

WtkMk +M0

Mk = BkB
⊤

k where Bk ∈ R
D×L

Bkl ∼ Nor(0, σ2
b ID)

Wtk = ZtkStk

Ztk ∼ Ber(πk), πk ∼ Bet(α/K)

Stk ∼ HN (0, σ2
s )

Figure 1: Graphical model in plate no-
tation. Shaded nodes are observed.

In the above construction,Ztk denotes whether basisk (given byMk) is chosen by taskt andStk ∈
R+ specifies theweight. Note that in the above construction, the Beta-Bernoulli prior distribution
over the basis selection matrixZ assumes a finiteK; for large enoughK it approximates the Indian
Buffet Process (IBP) [3]. Alternatively,Z can be drawn from the IBP, in which caseK need not
be set beforehand. Likewise, the number of columnsL of each low-rank matrixBk can be inferred
nonparametrically using the multiplicative gamma processprior [2].

Our model requires estimatingZ ∈ {0, 1}T×K, S ∈ R
T×K
+ , and{Bk}Kk=1

with eachBk ∈ R
D×L.

Therefore, the total number of parameters to be estimated isO(TK + KDL). In contrast, the
multitask metric learning model in [10] which learns a separate distance metric for each task (plus a
shared distance matrix) requires estimatingO(TD2) parameters which can be expensive when the
number of tasks (T ) and/or the number of features (D) per task is large.

3 Full Model and Inference

Figure 1 shows the full model. The training data for taskt is given in form ofNt examplesXt =
[xt

1, . . . , x
t
Nt

] and a setCt = {St,Dt,Rt} of constraints defined between examples whereSt, Dt,
andRt denote pairwise similarity, pairwise dissimilarity, andrelativecomparison based constraints
(given as triplets of the form “examplei is more similar toj than tok), respectively. The goal is to
infer the distributionP (Θ | {Xt, Ct}Tt=1) over the latent variables, given data from all theT tasks,
whereΘ collectively refers to the set of all the latent variables{Z, S, {Bk}Kk=0

} that we need to
infer (note that we do not need to explicitly maintainMk but onlyBk sinceMk = BkB

⊤

k ).

Pairwise Constraints: Each (similarity/dissimilarity based) pairwise constraint is modeled using a
logistic function with a marginµ [15]:

P (ytij |x
t
i, x

t
j ,Θ, µ) =

1

1 + exp(ytij(d
2
At
(xt

i, x
t
j)− µ))

whereytij = +1 if xt
i, x

t
j are similar, andytij = −1 otherwise. Two points are likely to be assigned

to the same class only when their distance is less thanµ. Hered2At
(xt

i, x
t
j) = (xt

i−xt
j)

⊤At(x
t
i−xt

j)

is the squared distance between two examplesxt
i, x

t
j from taskt, under the distance metricAt.

Preference Based Constraints: For taskt, the relative preference based constraintsRt are of the
form (i, j, k) which means that data pointxt

i is more similar toxt
j than toxt

k. We impose the large
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margin assumption [10] on the triplet constraints and require the following condition to be satisfied
for each triplet(i, j, k) of taskt: d2At

(xt
i, x

t
k) ≥ d2At

(xt
i, x

t
j) + 1.

Following other metric learning methods [13, 10], we express the “loss” associated with triplet
(i, j, k) of taskt to be: max(1 − {d2At

(xt
i, x

t
k) − d2At

(xt
i, x

t
j)}, 0). and use the following pseudo-

likelihood for each triplet based likelihood term:

exp(−max(1 − {d2At
(xt

i, x
t
k)− d2At

(xt
i, x

t
j)}, 0))

Exact inference in our model is intractable. We use MCMC to perform approximate inference in
our model. We use Gibbs sampling [3] to sample each binary-valued entry of the basis selection
matrixZ, and use elliptical slice-sampling [9] to sample forS and{Bk}Kk=0

. For brevity, we skip
the details of the inference.

4 Special Cases

For specific choices of the basis selection matrixZ (i.e., when it is set to afixedvalue) and the global
shared distance metricM0, our model leads to some spacial cases such as:

• The case whenZ is an identity matrix of sizeT × T andM0 = 0 is equivalent to learning
independent distance metric for each task, i.e.,At = Mt.

• The case whenZ is an identity matrix of sizeT × T andM0 6= 0 is equivalent to the
method proposed in [10] which assumes that the distance metric of each task is a sum of a
global distance metric and a task-specific distance metric,i.e.,At = M0 +Mt.

• The case whenZ is a matrix of all zeros, each distance metricAt = M0, which is equiva-
lent to all the tasks sharing a single global distance metricM0.

Our model, in addition to subsuming the above-mentioned cases, can flexibly model different relat-
edness between tasks by inferring metric basis{Mk} and basis selection matrixZ.

Also note that our model can be used to learnclass-specificdistance metrics [13] in single-task
learning. In this case, each task corresponds to a class and the data for each task only consists of
examples from the corresponding class.

5 Possible Extensions and Future Work

Our model can also be extended tozero-datatransfer learning [5] settings. For instance, in many
problems, features-descriptors/covariates for tasks maybe available [5] which, in our framework,
can be leveraged to predict the basis combination weightsZt ⊙ St, especially for anew task that
may not have any labels/distance-based-constraints. To model the basis combination weights of such
tasks, one possibility could to replace the Beta-Bernoulli/IBP prior onZt by afeature-dependentIBP
prior such as the linear probit model [11]: Suppose, a new task t has a task-descriptor feature vector
ft ∈ R

P then we could modelZt asP (Ztk = 1) = Φ0,1(β
⊤

k ft+Φ−1

0,1(ak)) whereak is thea priori
probability of basisk to be chosen,βk ∈ R

P are regression weights on the task descriptors, andΦ
represent the normal CDF. Note that the set of regression weights{βk}Kk=1

and basis usage prob-
abilities{ak}Kk=1

would be learned from the previous tasks. This would allow predicting the basis
combination weights for a new task, for which no supervision(in form of constraints) is available,
solely based on its task-descriptor feature vector.

Another possible extension could be doingactivedistance metric learning [15] in our multitask dis-
tance metric learning setting, which is expected to furtherreduce the number of constraints needed
for each task. Our Bayesian framework would naturally allowdoing this.

Finally, scaling up the model to large-data problems is another avenue of future work, especially to
handle the enormously large number of pairwise/triplet constraints in the training data which make
the likelihood computations a bottleneck in efficient inference. In this direction, two approaches
seem worth pursuing: (1) finding the most useful “support” pairs/triplets such that computing the
likelihood using only those can provide an approximation tothe likelihood on the entire set of con-
straints, e.g., using the idea of Firefly Monte Carlo [7]; and(2) instead of MCMC, using online
variational inference methods such as stochastic variational inference [4], which would be a promis-
ing way to scale up our model for larger data sets.
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6 Experiments

We report preliminary results of our model on a real-world data - Isolet [10]. The Isolet data set
consists of 5 tasks, constructed from speech data from 150 speakers with 5 groups. Each task is
a multiclass classification problem (classifying an utterance into one of 26 English alphabets). We
experiment with the more challenginglabel-incompatiblesetting [10] where the number of labels
in could be different across the different tasks (we construct the data such that some tasks had less
than 26 alphabets in the utterances). The data originally had 617 features and PCA was applied as a
preprocessing step (as done in [10]) to reduce the dimensionality to 169 using principal components
that capture 95% variance. We use a subset of the data which consists of 360 training, 120 test,
and 120 validation examples for each task. In our experiments, we only use triplet constraints; note
however that, if provided, the proposed model is capable of using pairwise constraints. To generate
the triplets, we follow the strategy used in [12]: for each training example, we choose 3 nearest
neighbors from the same class and 10 nearest neighbors from different classes.

For these experiments, we use nearest neighbors classification to predict the labels for the test data.
For this step, the number of nearest neighbors for each baseline as well as our method is chosen using
cross-validation on the validation set. We compare our model BMDML (for Bayesian Multitask
Distance Metric Learning) with the following baselines:

• Independent task learning with Euclidean distance (Ind-Euc).

• Global multitask distance metric learning (gMDML) which learns a single distance metric
shared by all the tasks, i.e.,At = M0 for t = 1, . . . , T .

• Multitask large-margin distance metric learning [10] which assumes each distance metric
to be of the formAt = M0 +Mt.

In our experiments, for our model we setK = 20 andL = 50, which worked well for our experi-
ments Alternatively, these values can be inferred from datausing the Indian Buffet Process [3] and
the multiplicative gamma process [2] prior onZt’s andBk’s, respectively.

Table 1: Classification accuracies on Isolet data

Ind-Euc gMDML mt-LMNN BMDML
Task 1 90.83% 91.12% 92.56% 93.74%
Task 2 95.00% 94.48% 96.12% 97.53%
Task 3 90.83% 91.04% 93.02% 93.95%
Task 4 87.50% 87.11% 89.35% 92.24%
Task 5 93.33% 94.12% 94.92% 96.72%
Average 91.50% 91.37% 93.19% 94.83%

Table 1 shows the results of our model and the various baselines. Our results for each experiment
are obtained by averaging the distance metrics over the posterior samples after burn-in. We report
results in terms of the classification accuracies on each task as well as the average classification
accuracy over all the tasks. As shown in Table 1, BMDML outperforms all the baselines which
demonstrates the model’s effectiveness in appropriately sharing the right amount of information
across the multiple tasks. We also notice that the gMDML baseline sometimes gets outperformed
by the simpler method Ind-Euc, which is probably a result of the small size of the training data
and/or adverse effects due to pooling all the tasks’ data to learn a single shared distance metric.

7 Conclusion
We have presented a model for learning distance metrics for multiple tasks by appropriately sharing
information across the different tasks. Our models leads toa flexible way of jointly learning multiple
distance metrics and, as discussed in Section 5, our model can be extended in several useful ways
such aszero-datatransfer learning to new tasks with no supervised information, active distance met-
ric learning, and can be given a fully nonparametric Bayesian treatment. We are currently exploring
these possibilities, as well as ways to scale up the model to larger data sets by employing alternative,
more efficient inference methods.
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