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Abstract

We present a Bayesian approach for jointly learning distanetrics for a large
collection of potentially related learning tasks. We assuirere exists a rela-
tively smaller set obasis distance metricand the distance metric for each task
is asparse positively weighted combination of these basis distanetios. The
set of basis distance metrics and the combination weigkttearned from data.
Moreover, taking a nonparametric Bayesian approach, thebeu of basis dis-
tance metrics need not be sepriori. Our proposed construction significantly
reduces the number of parameters to be learned, especiaéin the number
of tasks and/or data dimensionality is large. Several iexjghethods for multi-
task/transfer distance metric learning arise as specsaiscaf our model. Prelimi-
nary results on real-world data show that our model outper$various baselines.
We also discuss some possible extensions of our model ame fbrk.

1 Introduction

Computing distances between data points is a key step in prabjems such as classification, clus-
tering, and ranking. In many cases, the standard Euclidistande is not appropriate aptbblem-
specifiadistance functions are deemed more suitable. Distancéctesrning [14, 1] algorithms are
appealing in such cases as they allow learning data-drigtanete metrics. Specifically, the distance
between two data points andz; is defined ag = \/(x; — x;) T A(z; — z;) wheredisaD x D
positive semi-definite matrix denoting the distance meistance metric learning algorithm try to
learn the “right” distance metrigl, given a set of constraints (pairwise similarities/diskanities,

or relative preferences) provided as a form of supervision.

Often, we are interested in solving not just one But- 1 learning tasks and wish to leanmultiple
distance metricsly, ..., Ar (one per task). Since the tasks could possibly be relatésl diesir-
able tojointly learn these distance metrics in order to share statistiGigths across the multiple
learning tasks, especially when the amount of training dat@or the number of distance-based
constraints known for each task is small. This has been the/ation behind some recent meth-
ods fortransfer/multitaskdistance metric learning [10, 17,116,/ 18]. However, the tad&tedness
is usually unknowra priori. It is beneficial to learn the task-relatedness while jgitghrning the
distance metrics for the multiple tasks.

In this paper, we present a Bayesian approach to the muliiissance metric learning problem.
Our proposed approach is appealing due to several reasostty, lour approach discovers the task-
relatedness and allows a proper sharing of statisticahgtiheamong the multiple learning tasks.
Secondly, the Bayesian formulation naturally provideslegfosterior distribution over the distance
metrics [15], rather than a point estimate, which gives tiat®n more robustness against overfit-
ting when the amount of training data is small.

Specifically, our proposed formulation expresses the miigtanetric of each task as sparse
weighted combination of a set bhsisdistance metrics (intuitively, the degree of similarityta
tasks would be proportional to the number of basis distanegics they share). Note that this is
akin to a sparse codingl[6, 8] of each task-specific distareteicrusing the elements frondéstance
metric dictionary The sparse code for each task as well as the distance mietindry will be



learned from data using a nonparametric Bayesian appr@eshmodel allows incorporating both
strictly pairwise (similar or dissimilar) as well as relatipreference (e.qg., triplets) based constraints.

2 Bayesian Multitask Distance Metric Learning

We assume that we are giveéh tasks, with their corresponding distance metrics denoted a
Ay, ..., Ar. We further assume that eaéh x D distance metricd; can be written as a sparse,
positively weighted combination of a small set &f basis metricsM, ..., M, plus an off-
set M, shared by all the tasks. EadWy, £k = 0,..., K, is assumed to be a symmetric posi-
tive definite matrix, which is further assumed to be a lowkramatrix of the formBkB,CT where

B, € RP*L with L < D. Specifically, the task distance metricd, is modeled as follows:
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In the above constructioty;;, denotes whether badiggiven by M) is chosen by taskandS,;, €
R, specifies thaveight Note that in the above construction, the Beta-Bernouibmpdistribution
over the basis selection matrikassumes a finit&’; for large enough’ it approximates the Indian
Buffet Process (IBP)_[3]. Alternatively/ can be drawn from the IBP, in which casé need not
be set beforehand. Likewise, the number of coluthrid each low-rank matrix3, can be inferred
nonparametrically using the multiplicative gamma proqess [2].

Our model requires estimating € {0, 1}7*%, 5 € RT**, and{B;}/<, with eachB,, € RP*L.
Therefore, the total number of parameters to be estimatél{1SK + KDL). In contrast, the
multitask metric learning model i [10] which learns a sepadistance metric for each task (plus a
shared distance matrix) requires estimatin@ D?) parameters which can be expensive when the
number of tasksT() and/or the number of featureB] per task is large.

3 Full Model and Inference

Figure[1 shows the full model. The training data for task given in form of N; examplesX? =
[z¢, ... 7x§Vt] and a set’’ = {S;, Dy, R} of constraints defined between examples wireD,,
andRR; denote pairwise similarity, pairwise dissimilarity, aradative comparison based constraints
(given as triplets of the form “exampfds more similar tgj than tok), respectively. The goal is to
infer the distributionP(© | { X, C*}]_,) over the latent variables, given data from all theasks,
where® collectively refers to the set of all the latent variab{es S, { B, }X_,} that we need to

infer (note that we do not need to explicitly maintdif). but only By, sinceM), = B, B}).

Pairwise Constraints: Each (similarity/dissimilarity based) pairwise conatitds modeled using a
logistic function with a margin [15]:

1
1+ exp(yf; (d%, (2}, 25) — )

P(yfj|x’§ a5, 0, ) =

79 j7

wherey!; = +1if zf, 2% are similar, and;j; = —1 otherwise. Two points are likely to be assigned
to the same class only when their distance is less thafered? (zf, %) = (zf — )T A, (2} — %)

is the squared distance between two exarrrpjes? from taskt, under the distance metrit;.

Preference Based Constraints: For taskt, the relative preference based constraitsare of the
form (4, j, k) which means that data poinf is more similar t0r§- than toz! . We impose the large



margin assumption [10] on the triplet constraints and negtiie following condition to be satisfied
for each triplet(i, j, k) of taskt: d3 (a!,2}) > d3, (at,2%) + 1.

t

Following other metric learning methods [13,110], we expréd® “loss” associated with triplet
(i, 4, k) of taskt to be: max(1 — {d% («},z}) — d%, («},")},0). and use the following pseudo-
likelihood for each triplet based likelihood term: '

exp(—max(1 — {d}, (2}, z}) — d, (a7, 25)}, 0))

Exact inference in our model is intractable. We use MCMC tdqren approximate inference in
our model. We use Gibbs samplirig [3] to sample each binalyedeentry of the basis selection
matrix Z, and use elliptical slice-sampling| [9] to sample foand{B;}~_,. For brevity, we skip
the details of the inference.

4 Special Cases

For specific choices of the basis selection maffifi.e., when it is set to fixedvalue) and the global
shared distance metridy, our model leads to some spacial cases such as:

e The case whe is an identity matrix of sizd" x T"andM, = 0 is equivalent to learning
independent distance metric for each task, de.= M,.

e The case whel¥ is an identity matrix of sizd" x T and M, # 0 is equivalent to the
method proposed i [10] which assumes that the distancemeéteach task is a sum of a
global distance metric and a task-specific distance megicA;, = My + M,.

e The case whew is a matrix of all zeros, each distance metfic= M, which is equiva-
lent to all the tasks sharing a single global distance métfjc

Our model, in addition to subsuming the above-mentioneds;a=an flexibly model different relat-
edness between tasks by inferring metric b&8ig,} and basis selection matrizx.

Also note that our model can be used to lealass-specifidistance metrics [13] in single-task
learning. In this case, each task corresponds to a classhardthta for each task only consists of
examples from the corresponding class.

5 Possible Extensions and Future Work

Our model can also be extendedzero-datatransfer learning [5] settings. For instance, in many
problems, features-descriptors/covariates for tasks Ineagvailable[[5] which, in our framework,
can be leveraged to predict the basis combination weights S;, especially for amewtask that
may not have any labels/distance-based-constraints. Tekttee basis combination weights of such
tasks, one possibility could to replace the Beta-BerntBH prior onZ; by afeature-dependehBP
prior such as the linear probit model[11]: Suppose, a nelithas a task-descriptor feature vector
f: € R then we could modet; asP(Zy, = 1) = ®o1(3] fi + @&}(ak)) wherea, is thea priori
probability of basisk to be chosens;, € R are regression weights on the task descriptors,dand
represent the normal CDF. Note that the set of regressioghtssf 3, } £, and basis usage prob-
abilities {ax } 1<, would be learned from the previous tasks. This would alloedfsting the basis
combination weights for a new task, for which no supervigiorform of constraints) is available,
solely based on its task-descriptor feature vector.

Another possible extension could be doamgivedistance metric learnin@ [15] in our multitask dis-
tance metric learning setting, which is expected to furtbduce the number of constraints needed
for each task. Our Bayesian framework would naturally alttsing this.

Finally, scaling up the model to large-data problems is lagioavenue of future work, especially to
handle the enormously large number of pairwise/tripletst@ints in the training data which make
the likelihood computations a bottleneck in efficient irfece. In this direction, two approaches
seem worth pursuing: (1) finding the most useful “supporfitgaiplets such that computing the
likelihood using only those can provide an approximatiothlikelihood on the entire set of con-
straints, e.g., using the idea of Firefly Monte Caflo [7]; 48} instead of MCMC, using online
variational inference methods such as stochastic vanaltiaferencel[4], which would be a promis-
ing way to scale up our model for larger data sets.



6 Experiments

We report preliminary results of our model on a real-worldiadal solet [10]. The Isolet data set
consists of 5 tasks, constructed from speech data from 1&&keps with 5 groups. Each task is
a multiclass classification problem (classifying an utteeinto one of 26 English alphabets). We
experiment with the more challengitabel-incompatiblesetting [10] where the number of labels
in could be different across the different tasks (we comstthe data such that some tasks had less
than 26 alphabets in the utterances). The data originatlyoiid features and PCA was applied as a
preprocessing step (as donelinl[10]) to reduce the dimeal#ipto 169 using principal components
that capture 95% variance. We use a subset of the data whiddist® of 360 training, 120 test,
and 120 validation examples for each task. In our experismy&e only use triplet constraints; note
however that, if provided, the proposed model is capablesimfgipairwise constraints. To generate
the triplets, we follow the strategy used [n[12]: for eachiriing example, we choose 3 nearest
neighbors from the same class and 10 nearest neighbors fflemedt classes.

For these experiments, we use nearest neighbors classifitatpredict the labels for the test data.
For this step, the number of nearest neighbors for eachibasal well as our method is chosen using
cross-validation on the validation set. We compare our hmB#DML (for Bayesian Multitask
Distance Metric Learning) with the following baselines:

¢ Independenttask learning with Euclidean distance (Ind}Eu

e Global multitask distance metric learning (gMDML) whiclatas a single distance metric
shared by all the tasks, i.ed;, = Myfort =1,...,T.

e Multitask large-margin distance metric learning![10] wh&ssumes each distance metric
to be of the formA; = My + M,.

In our experiments, for our model we skt = 20 and L = 50, which worked well for our experi-
ments Alternatively, these values can be inferred from datiag the Indian Buffet Process [3] and
the multiplicative gamma process [2] prior &ip's and By,'s, respectively.

Table 1: Classification accuracies on Isolet data

Ind-Euc| gMDML | mt-LMNN | BMDML
Task1 | 90.83% | 91.12% | 92.56% 93.74%
Task2 | 95.00% | 94.48% | 96.12% 97.53%
Task3 | 90.83% | 91.04% | 93.02% 93.95%
Task4 | 87.50% | 87.11% | 89.35% 92.24%
Task5 | 93.33% | 94.12% | 94.92% 96.72%
Average| 91.50% | 91.37% | 93.19% 94.83%

Table[1 shows the results of our model and the various baseli@ur results for each experiment
are obtained by averaging the distance metrics over thepassamples after burn-in. We report
results in terms of the classification accuracies on ead¢haasvell as the average classification
accuracy over all the tasks. As shown in Tdble 1, BMDML ouipens all the baselines which

demonstrates the model's effectiveness in appropriatedyisg the right amount of information

across the multiple tasks. We also notice that the gMDML lr@ssometimes gets outperformed
by the simpler method Ind-Euc, which is probably a resultha $mall size of the training data
and/or adverse effects due to pooling all the tasks’ datedmla single shared distance metric.

7 Conclusion

We have presented a model for learning distance metricsdttipte tasks by appropriately sharing
information across the different tasks. Our models leaddhexible way of jointly learning multiple
distance metrics and, as discussed in Sefion 5, our modddeaxtended in several useful ways
such agero-dataransfer learning to new tasks with no supervised inforomtactive distance met-
ric learning, and can be given a fully nonparametric Bayesi@atment. We are currently exploring
these possibilities, as well as ways to scale up the modetget data sets by employing alternative,
more efficient inference methods.
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