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Abstract—Dimensionality reduction in multivariate time series
has broad applications, ranging from financial-data analysis to
biomedical research. However, high levels of ambient noise and
random interference result in nonstationary signals, which may
lead to inefficient performance of conventional methods. In this
paper, we propose a nonlinear dimensionality-reduction frame-
work, using diffusion maps on a learned statistical manifold. This
yields a low-dimensional representation of the high-dimensional
time series. We show that diffusion maps, with affinity kernels
based on the Kullback-Leibler divergence between the local
statistics of samples, allow for efficient approximation of pairwise
geodesic distances. To construct the statistical manifold, we
estimate time-evolving parametric distributions, by designing a
family of Bayesian generative models. The proposed framework
can be applied to problems in which the time-evolving distri-
butions (of temporally localized data), instead of the samples
themselves, are driven by a low-dimensional underlying process.
We provide efficient parameter estimation and a dimensionality
reduction methodology, and apply it to two applications: music
analysis and epileptic-seizure prediction.

I. INTRODUCTION

In the study of high-dimensional data, it is often of in-
terest to embed the high-dimensional observations in a low-
dimensional space, where hidden parameters may be discov-
ered, noise suppressed, and interesting and significant structure
revealed. Due to high dimensionality and nonlinearity in
many real-word applications, nonlinear dimensionality reduc-
tion techniques have been increasingly popular [1], [2], [3].
These manifold-learning algorithms build data-driven models,
organizing data samples according to local affinities on a low-
dimensional manifold. Such methods have broad applications
to, for example, analysis of financial data, computer vision,
hyperspectral imaging, and biomedical engineering [4], [5],
[6].

The notion of dimensionality reduction is useful in mul-
tivariate time series analysis. In the corresponding low-
dimensional space, hidden states may be revealed, change
points detected, and temporal trajectories visualized [7], [8],
[9]. Recently, various nonlinear dimensionality reduction tech-
niques have been extended to time series, including spatio-
temporal Isomap [10] and temporal Laplacian eigenmap [11].
In these methods, besides local affinities in the space of the
data, available temporal covariate information is incorporated,
leading to significant improvements in discovering the latent
states of the series.

The basic assumption in dimensionality reduction is that
the observed data samples do not fill the ambient space
uniformly, but rather lie on a low-dimensional manifold. Such
an assumption does not hold for many types of signals, for
example, data with high levels of noise [4], [12], [13], [14].
In [13] and [14], the authors consider a different, relaxed
dimensionality reduction problem on the domain of the un-
derlying probability distributions. The main idea is that the
varying distributions, rather than the samples themselves, are
driven by few underlying controlling processes, yielding a low-
dimensional smooth manifold in the domain of the distribution
parameters. An information-geometric dimensionality reduc-
tion (IGDR) approach is then applied to obtain an embedding
of high-dimensional data using Isomap [1], thereby preserving
the geodesic distances on the manifold of distributions.

Two practical problems arise in these methods, limiting
their application. First, in [13], [14] multiple data sets were
assumed, with the data in each set drawn from the same
distributional form, with set-dependent distribution parame-
ters. The embedding was inferred in the space of the dis-
tribution parameters. In this setting a large number of data
sets are required, and time dependence in the evolution of
the distribution parameters is not considered. By considering
time evolution of the distribution from a single time-evolving
dataset, we here substantially reduce the amount of needed
data, and we extend the method to analysis of time series.
A second limitation of previous work concerns how geodesic
distances were computed. In [13], [14] the approximatation
of the geodesic distance between all pairs of samples was
computed using a step-by-step walk on the manifold, requiring
O(N3) operations, which may be intractable for large-N
problems.

In this paper, we present a dimensionality-reduction
approach using diffusion maps for nonstationary high-
dimensional time series, which addresses the above short-
comings. Diffusion maps constitute an effective data-driven
method to uncover the low-dimensional manifold, and provide
a parametrization of the underlying process [15]. The main
idea in diffusion maps resides in aggregating local connections
between samples into a global parameterization, via a kernel.
Many kernels implicitly induce a mixture of local statistical
models in the domain of the measurements. In particular, it is
shown that using distributional information outperforms using
sample information when the distributions are available [13].
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We exploit this assumption and articulate that the observed
multivariate time series Xt ∈ RN , t = 1, · · · , T , is generated
from a smoothly varying parametric distribution p(Xt|βt),
where βt is a local parameterization of the time evolving
distribution. We propose to construct a Bayesian generative
model with constraints on βt, and use Markov Chain Monte
Carlo (MCMC) to estimate βt. Diffusion maps are then
applied to reveal the statistical manifold (of the estimated
distributions), using a kernel with Kullback-Leibler (KL) di-
vergence as the distance metric. Noting that the parametric
form of distributions significantly affects the structure of the
mapped data, the Bayesian generative model should avoid
using a strong informative prior without substantial evidence.

Diffusion maps rely on constructing a Laplace operator,
whose eigenvectors approximate the eigenfunctions of the
backward Fokker-Planck operator. These eigenfunctions de-
scribe the dynamics of the system [16]. Hence, the trajectories
embedded in the coordinate system formulated by the princi-
pal eigenvectors can be regarded as a representation of the
controlling underlying process θt of the time series Xt.

One of the main benefits of embedding the time series
samples into a low-dimensional domain is the ability to define
meaningful distances. In particular, diffusion-map embedding
embodies the property that the Euclidean distance between the
samples in the embedding domain corresponds to a diffusion
distance in the distribution domain. Diffusion distance mea-
sures the similarity between two samples according to their
connectivity on the low-dimensional manifold [3], and has
a close connection to the geodesic distance. Thus, diffusion
maps circumvent the step-by-step walk on the manifold [13],
computing an approximation to the geodesic distance in a
single low-cost operation. Another practical advantage of
the proposed method is that we may first reveal the low-
dimensional coordinate system based on reference data, and
then in an online fashion extend the model for newly acquired
data with low computational cost. This is demonstrated further
when considering applications in Section IV.

The proposed framework is applied to two applications in
which the data are best characterized by temporally evolving
local statistics, rather than based on measures directly applied
to the data itself: music analysis and epileptic seizure predic-
tion based on electroencephalography (EEG) recordings. In the
first application, we show that using the proposed approach,
we can uncover the key underlying processes: human voice
and instrumental sounds. In particular, we exploit the effi-
cient computation of diffusion distances to obtain intra-piece
similarity measures, applied to well-known music, which are
compared to state-of-the-art techniques.

In EEG, one goal is to map the recordings to the unknown
underlying “brain activity states”. This is especially crucial
in epileptic seizure prediction, where preseizure (dangerous)
states can be distinguished from interictal (safe) states, so
that patients can be warned prior to seizures [17]. In this
application, the observed time series is the EEG recordings
and the underlying process is the brain state: preseizure or
interictal. EEG recordings tend to be noisy, and hence, the
mapping between the state of the patient’s brain and the avail-
able measurements is not deterministic, and the measurements

do not lie on a smooth manifold. Thus, the intermediate step of
mapping the observations to a time-evolving parametric family
of distributions is essential to overcome this challenge. We
use the proposed approach to infer a parameterization of the
signal, viewed as a model summarizing the signal’s distribu-
tional information. Based on the inferred parameterization, we
show that preseizure state intervals can be distinguished from
interictal state intervals. In particular, we show the possibility
of predicting seizures by visualization and simple detection
algorithms, tested on an anonymous patient.

This paper makes three principal contributions. We first
present an efficient diffusion map approach based on dis-
tributional information of time-series data, which preserves
the geodesic distances between samples on a statistical mani-
fold, and uncovers an underlying process that consists of the
controlling factors. Second, we propose a class of Bayesian
models with various prior specifications, to learn the time-
evolving statistics. We finally apply the proposed framework
to two applications: music analysis and analysis of EEG
recordings.

The remainder of the paper is organized as follows. In
Section II we review the diffusion-maps technique, propose an
extended construction and examine its theoretical and practical
properties. We propose in Section III multiple approaches to
model multivariate time series with time-evolving distribu-
tions. In Section IV, results on two real-world applications
are discussed. Conclusions and future work are outlined in
Section V.

II. DIFFUSION MAPS USING KULLBACK-LEIBLER
DIVERGENCE

A. Underlying parametric model

Let Xt ∈ RN be the raw data or extracted features at time t.
The key concept is that the high-dimensional representation of
Xt exhibits a characteristic geometric structure. This structure
is assumed to be governed by an underlying process on a
low-dimensional manifold, denoted by θt, that propagates
over time as a diffusion process according to the following
stochastic differential equation (SDE)1

dθit = ai(θ
i
t)dt+ dwit (1)

where θit is component i of θt, ai are (possibly nonlinear)
drift functions and wt is a Brownian motion. In particular,
we assume that the underlying process induces a parametric
family of probability distributions in the measurable domain,
i.e., p(Xt|θt). In other words, the underlying process controls
the statistics of the measured signals.

Note that θt controls the time-evolution of the underlying
distribution of the data, rather than directly the data itself.
We do not assume a priori knowledge of the form of the
distribution p(·|θt).

1In this paper, superscripts represent access to elements in vectors, i.e., xi

is the i-th element of the vector x.
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B. Local models and the Kullback-Leibler divergence

We use empirical densities to represent the local statistics of
the signal. In particular, as an intermediate step, we assume a
parametric family of local distributions. Let p(Xt|βt) denote
the local density of Xt. We emphasize that the assumed
parameterization of the local distribution β is considerably
different than θ: θ is the fundamental parametrization of the
low-dimensional manifold, that represents the intrinsic state
governing the signal; β is merely used within a chosen local
distribution, employed as an intermediate step, with the goal
of inferring θ.

The key thing to note is that because the data are assumed
noisy, we do not assume the data itself lives on a low-
dimensional manifold. Rather, we assume that there is an
underlying and unknown distribution p(Xt|θt), that evolves
with time, and that is responsible for the data. To uncover
the time evolution of θ (and to infer the dimension of the
parameter vector θ), we assume a form of a generally different
distribution p(Xt|βt), typically selected to balance accuracy
with computational simplicity. We then compute distances be-
tween data at time t and t′, based on p(Xt|βt) and p(Xt′ |βt′),
using an appropriate kernel. From the resulting distance matrix
we seek to uncover θt for all t. In the end we still do not know
the responsible distribution p(Xt|θt), but we uncover how the
(typically low-dimensional) parameters θt evolve with time,
manifesting a useful embedding. In [13], [14] the authors also
estimated distributions p(Xn|βn) for multilple data sets, here
with Xn representing all the data in dataset n ∈ {1, . . . , N};
they estimate the associated {θn} via a similar embedding
procedure. By leveraging time, we effectively infer N local
datasets, characterized by time-evolving distributions.

We propose to use the Kullback-Leibler (KL) divergence
as a metric between the parametric probability density func-
tions (pdfs). For any pair of measurements Xt and Xt′ , the
KL divergence between the corresponding parametric pdfs is
defined as

D(p(X|βt)||p(X|βt′)) =

∫
X

ln

(
p(X|βt)

p(X|βt′)

)
p(X|βt)dX. (2)

Let βt0 and βt = βt0 + δβt be two close samples in the
intermediate parametric domain. It can be shown [18] that
the KL divergence is locally approximated by the Fisher
information metric, i.e.,

D(p(X|βt)||p(X|βt0)) ' δβTt I(βt0)δβt (3)

where I(βt0) is the Fisher information matrix.
We then define the Riemannian manifold (M, g), where the

Fisher metric in (3) is associated with the inner product on the
manifold tangent plane g between the local distributions,

gij(βt) =
∑
i,j

∫
∂ log p(X|βt)

∂βit

∂ log p(X|βt)
∂βjt

p(X|βt)dX

(4)
The points residing on M are parametric probability den-
sity functions p(X|βt). Thus, for p(X|βt0+δt) in a local
neighborhood of p(X|βt0), the Fisher metric between these
two points can be approximated by D(p(X|βt)||p(X|βt0)).
Therefore, we use the KL divergence to construct the affinity
kernel and build the graph for diffusion maps, thus obtaining

diffusion distance approximating a Riemannian metric on the
manifold of local distributions. This will be addressed in detail
in Section II-C.

For the signal types reported in this paper (music and EEG),
we have empirically found that a simple local Gaussian model
(Gaussian mixture model) with zero mean and time evolving
covariance matrices can effectively describe the local empirical
densities of the selected feature sets of the signals. Thus,
the intermediate parameterization βt is a local covariance
matrix Σt, and the local distribution of Xt is approximated
by N (0,Σt). In this case, the KL divergence can be explicitly
written as

D(p(X|βt)||p(X|βt′)) =
1

2
Tr(Σ−1t Σt′ − IN ). (5)

Based on the KL divergence, we define a symmetric pair-
wise affinity function using a Gaussian kernel

k(Xt,Xt′)=exp

{
−D(p(X|βt)||p(X|βt′))+D(p(X|βt′)||p(X|βt))

ε

}
(6)

The decay rate of the exponential kernel implies that only pdfs
p(X|βt) within an ε-neighborhood of p(X|βt′) are taken into
account and have non negligible affinity. Thus, we can use the
approximation of the KL divergence using the Fisher metric
(3) and obtain that

k(Xt,Xt′)'exp
{
− (βt − βt′)

T (I(βt) + I(βt′))(βt − βt′)

ε

}
(7)

C. Laplace operator and diffusion maps

Let W be a pairwise affinity matrix between the set of
measurements Xt , whose (t, t′)-th element is given by

Wt,t′ = k(Xt,Xt′). (8)

Based on the kernel, we form a weighted graph, where the
measurements Xt are the graph nodes and the weight of the
edge connecting node Xt to node Xt′ is Wt,t′ . The particular
choice of the Gaussian kernel exhibits a notion of locality
by defining a neighborhood around each measurement Xt of
radius ε, i.e., measurements Xt′ such that (βt−βt′)T (I(βt)+
I(βt′))(βt−βt′) > ε are weakly connected toXt. In practice,
we set ε to be the median of the elements of the kernel matrix.
According to the graph interpretation, such a scale results in a
well connected graph because each measurement is effectively
connected to half of the other measurements. For more details,
see [19], [20].

Using the KL divergence (the Fisher information metric)
as an affinity measure has the effect of an adaptive scale.
Consider the parametric family of normal distributions. In
particular, assume that the process Xt is one dimensional and
is given by

Xt = Yt + Vt (9)

where Yt ∼ N (0, θt) and Vt is an adaptive white Gaussian
noise with zero mean and fixed σ2

v variance. According to the
parametric model (Section II-A), θt follows a diffusion process
propagation model which results in time varying distributions.
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Consequently, the parametric pdf of the measurements is given
by

p(X|βt) = N (0, βt) (10)

where βt = θt+σ2
v , and the corresponding Fisher Information

matrix is

I(βt) =
1

2β2
t

. (11)

In this case, the corresponding kernel based on the KL
divergence is

k(Xt, Xt′) = exp

{
−‖θt − θt

′‖2

ε(βt, βt′)

}
(12)

where

ε(βt, βt′) =
ε

2

(
1

(θt + σ2
v)2

+
1

(θt′ + σ2
v)2

)−1
(13)

is a locally adapted kernel scale with the following inter-
pretation: when the noise rate σ2

v increases, a larger scale
(neighborhood) is used in order to see “beyond the noise”
and capture the geometry and variability of the underlying
parameter θ. We remark that in this specific case, the adaptive
scale is the local covariance of the measurements. Thus,
this metric is equal to the Mahalanobis distance between the
measurements [9].

Let D be a diagonal matrix whose elements are the sums
of rows of W , and let W norm = D−1/2WD−1/2 be a
normalized kernel that shares its eigenvectors with the nor-
malized graph-Laplacian I −W norm [21]. It was shown [3]
that W norm converges to a diffusion operator that reveals the
low-dimensional manifold and a subset of its eigenvectors give
a parameterization of the underlying process. We assume that
these eigenvectors are the principal eigenvectors associated
with the largest eigenvalues, although there is no guarantee.
Thus, the eigenvectors of W norm, denoted by ϕ̃j , reveal
the underlying structure of the data. Specifically, the t-th
coordinate of the j-th eigenvector can be associated with the
j-th coordinate of the underlying process θt of measurement
Xt. The eigenvectors are ordered such that λ0 ≥ λ1 ≥
. . . ≥ λT−1 > 0, where λj is the eigenvalue associated with
eigenvector ϕ̃j . BecauseW norm ∼ P = D−1W , andD−1W
is row-stochastic, λ0 = 1 and ϕ̃0 is the diagonal of D1/2.
In addition, W norm is positive semidefinite, and hence, the
eigenvalues are positive. The matrix P may be interpreted as
a transition matrix of a Markov chain on the graph nodes.
Specifically, the states of the Markov chain are the graph
nodes and Pt,t′ represents the probability of transition in a
single Markov step from node Xt to node Xt′ . Propagating
the Markov chain n steps forward corresponds to raising P to
the power of n. We also denote the probability function from
node Xt to node Xt′ in n steps by pn(Xt,Xt′).

The eigenvectors are used to obtain a new data-driven
description of the measurements Xt via a family of mappings
that are called diffusion maps [3]. Let Ψ`,n(Xt) be the
diffusion mappings of the measurements into the Euclidean
space R`, defined as

Ψ`,n(Xt) =
(
λn1 ϕ̃

t
1, λ

n
2 ϕ̃

t
2, . . . , λ

n
` ϕ̃

t
`

)T
(14)

where ` is the new space dimensionality ranging between 1
and T − 1. Diffusion maps have therefore two parameters:
n and `. Parameter n corresponds to the number of steps of
the Markov process on the graph, since the transition matrices
P and P n share the same eigenvectors, and the eigenvalues
of P n are the eigenvalues of P raised to the power of n.
Parameter ` indicates the intrinsic dimensionality of the data.
The dimension may be set heuristically according to the decay
rate of the eigenvalues, as the coordinates in (14) become
negligible for a large `. In practice, we expect to see a
distinct “spectral gap” in the decay of the eigenvalues. Such
a gap is often a good indicator of the intrinsic dimensionality
of the data and its use is a common practice in spectral
clustering methods. The mapping of the data Xt into the
low-dimensional space using (14) provides a parameterization
of the underlying manifold and its coordinates represent the
underlying processes θt (1). We note that as n increases,
the decay rate of the eigenvalues also increases (they are
confined in the interval [0, 1]). As a result, we may set ` to
be smaller, enabling to capture the underlying structure of the
measurements in fewer dimensions. Thus, we may claim that a
larger number of steps usually brings the measurements closer
in the sense of the affinity implied by P n, and therefore, a
more “global” structure of the signal is revealed.

The Markov process aggregates information from the entire
set into the affinity metric pn(Xt,Xt′), defining the probabil-
ity of “walking” from node Xt to Xt′ in n steps. For any n,
the following metric

D2
n(Xt,Xt′) =

∫
Xs

[p(Xt,Xs)−pn(Xt′ ,Xs)]
2w(Xs)dXs (15)

is called diffusion distance, with w(Xs) = 1/ϕ̃0(Xs). It
describes the relationship between pairs of measurements in
terms of their graph connectivity, and as a consequence, local
structures and rules of transitions are integrated into a global
metric. If the integral is evaluated on the points of the observed
data, it can be shown that the diffusion distance (15) is equal
to the Euclidean distance in the diffusion maps space when
using all ` = T − 1 eigenvectors [3], i.e.,

Dn(Xt,Xt′) = ‖Ψ`,n(Xt)−Ψ`,n(Xt′)‖2 (16)

Thus, comparing between the diffusion mappings using the
Euclidean distance conveys the advantages of the diffusion
distance stated above. In addition, since the eigenvalues tend
to decay fast, for large enough n, the diffusion distance can be
well approximated by only the first few eigenvectors, setting
` << T − 1.

D. Sequential implementation

The construction of the diffusion maps embedding is com-
putationally expensive due to the application of the eigenvector
decomposition (EVD). In practice, the measurements are not
always available in advance. Thus, the computationally de-
manding procedure should be applied repeatedly whenever a
new set of measurements become available. In this section, we
describe a sequential procedure for extending the embedding,
which circumvents the EVD applications and may be suitable
for supervised techniques [22], [23], [24].
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Let Xt be a sequence of T reference measurements that
are assumed to be available in advance. The availability of
these measurements enables one to estimate the local densities
and the corresponding kernel based on the KL divergence.
Then, the embedding of the reference measurements can be
computed.

Let Xs be a new sequence of S measurements, which are
assumed to become available sequentially. As proposed in
[23], [24], we define a nonsymmetric pairwise metric between
any new measurementXs and any reference measurementXt,
similarly to (7) as

a(Xs,Xt) = exp

{
− (βs − βt)T I(βt)(βs − βt)

ε

}
(17)

where βt and βs are the parametrization of the local densities
of the measurements at t and s, respectively, and a correspond-
ing nonsymmetric kernel

As,t = a(Xs,Xt). (18)

The construction of the nonsymmetric kernel requires the fea-
ture vectors of the measurements and the Fisher Information
matrix of merely the reference measurements.

Let Ã = D−1A AQ−1, where DA is a diagonal matrix
whose diagonal elements are the sums of rows of A, and Q
is a diagonal matrix whose diagonal elements are the sums of
rows of D−1A A. It was shown by [22], [23] that

W = ÃT Ã (19)

where W is the pairwise affinity matrix on the T reference
measurements Xt as defined in Section II-C.

We define now the dual extended S × S kernel between
the new samples as W ext = ÃÃT . It is shown in [24]
that the elements of the extended kernel are proportional
to a Gaussian defined similarly to (7) between a pair of
new measurements. Combining the relationship between the
kernels W and W ext yields: (1) the kernels share the same
eigenvalues λj ; (2) the eigenvectors ϕj of W are the right
singular vectors of Ã; (3) the eigenvectors ψj of W ext are
the left singular vectors of Ã. As discussed in Section II-C,
the right singular vectors represent the underlying process
of the reference measurements, and by [22], [23], the left
singular vectors naturally extend this representation to the
new measurements. In addition, the relationship between the
eigenvectors of the two kernels is given by the singular value
decomposition (SVD) of Ã and is explicitly expressed by

ψj =
1√
λj
Ãϕj . (20)

Now, the extended eigenvectors ψj can be used instead of
ϕ̃j to construct the embedding of the new measurements
Ψ`,n(Xs) in (14).

III. MODELING TIME EVOLVING COVARIANCE MATRICES

To calculate the KL divergence, we need to estimate the
local/intermediate parametric distribution p(Xt|βt) at each
time. The amount of data in each time window is limited,
and therefore, assumptions have to be made to constrain the

parameteric space. In this paper, we assume that the signal
sample at each time is drawn from a multivariate Gaussian
distribution with time evolving parameters. For simplicity, we
focus on zero mean Gaussian distributions. We assume that the
time evolving covariance matrices characterize the dynamics
of the time series. Such a time evolving covariance model
can be applied to many multivariate time series, including
volatility analysis in finance [4] and EEG activity in neurology
[5]. Popular approaches for estimating smoothly varying co-
variance matrices include the exponentially weighted moving
average (EWMA) model [25] and multivariate generalized au-
toregressive conditional heteroscedasticity (GARCH) models
[26]. The former captures the smoothly varying trends, but
fails to handle missing data, and requires long series to achieve
high estimation accuracy [27]. The latter handles missing data
at the expense of over-restricting the flexibility of the dynamics
of the covariance matrices [4]. Most moving average type
approaches can be simplified as Σ̂t = πtΣ̂t−1 + (1− πt)Σ̄t,
where Σ̄t is the covariance matrix of the sample at t and
πt is a smoothing parameter. Σ̂t can be considered as the
posterior mean estimate for Σt using an inverse-Wishart prior
with mean proportional to Σ̂−1t−1. Given their broad use in
practice, moving average type approaches are also tested in
our experiments.

In this paper, we present a latent variable model to infer
the time evolving covariance matrices, inspired by the idea
proposed in [12]. This generative model allows for handling
missing data and aims to capture the dynamics of the evolving
structure of the covariance matrices. We assume at each time
t, t = 1, · · · , T , a factor analyzer (FA) model fits the observed
data sample Xt ∈ RN :

Xt ∼ N (F tSt, α
−1IN ) (21)

St ∼ N (0, IK) (22)
α ∼ Ga(e0, f0) (23)

where F t ∈ RN×K formulates a time evolving factor loading
matrix, with a prior that will be described next. St is a K
dimensional variable in the latent space, and α models the
noise level in the observation space. This model constrains
the high-dimensional data to locally reside in a K dimensional
space, but does not assume local stationarity due to the time
evolving factor-loading matrix. Thus, at time t, the marginal
distribution of Xt is

Xt ∼ N (0N ,Σt) (24)
Σt = (F t)(F t)T + α−1IN (25)

Therefore, we could use posterior estimates of F t and α to
estimate Σt. Because we are only interested in (F t)(F t)T ,
instead of F t or St, this latent variable model circumvents
the identifiability problem encountered in common FA models
[28]. To impose smoothness and facilitate parameter estima-
tion, two types of priors for F t are proposed: a Gaussian
process (GP) [29] and non-stationary autoregressive (AR)
process [7].
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In the GP model, elements of F t are constructed as

Fij ∼ GP(0,Ωij) (26)

Ωij
t1,t2 = σ−1(k(t1, t2) + σnδ(t1 − t2)) (27)
σ ∼ Ga(c0, d0) (28)

where σ−1 represents the variance of the factor loadings over
time. To infer σ−1 from the data, a broad gamma distribution
prior is proposed. The hyperparameter σn represents the noise
variance for the factor loadings, which is kept fixed at a small
value (10−3 in our case). Each time varying factor loading
F tij , t = 1, · · · , T , is constructed from a GP. Various kernel
functions k(t1, t2) can be used for the GP, including the
radius basis function (RBF) k(t1, t2) = exp(− (t1−t2)2

2τ2 ). We
have tested different kernel functions and RBF is chosen to
allow for simple interpretation in our experiments. τ is the
length-scale parameter, which determines globally the shape of
autocorrelation function [12]. This facilitates strong correlation
between F t1ij and F t2ij if |t1 − t2| < τ and inhibits the
correlation otherwise. τ can be estimated from the data by
putting a discrete uniform prior over a library of candidate
atoms [30]. However, in practice, the correlation length might
be available a priori and used as the appropriate value,
which often works effectively. Standard MCMC sampling can
be used to infer model parameters, as summarized in the
Appendix. Sampling Fij from the GP has aO(T 3) complexity,
which can be alleviated using the random projection idea in
[30].

In the non-stationary AR process prior model, elements of
F t are constructed as

F tij = F t−1ij + ξtij (29)

ξtij ∼ N (0,η−1ij ) (30)
ηij ∼ Ga(g0, h0) (31)

The time varying factor loading matrix F t, t = 1, · · · , T ,
is a random walk whose smoothness is determined by ξt.
A shrinkage prior [31] favoring ξt to be sparse is added to
encourage smoothness. Other kinds of sparseness-promoting
priors, including spike-slab [32] and generalized double Pareto
[33], can also be considered. The zero mean distribution
for ξij models the difference between consecutive covariance
matrices as a stationary process, which captures the drift of
factor loadings over time. In this model, the trend of each
factor loading is assumed independent. However, correlated
trends of F t and group sparsity of ξt can be considered
for more sophisticated data, as a future direction. A forward
filtering backward sampling (FFBS) [34] method is used to
sample F t (summarized in the Appendix).

Choosing which estimation method to use is data specific
and depends on the available prior knowledge. If the co-
variance structures are highly correlated for nearby samples,
while they are highly uncorrelated for faraway samples, the
model with GP prior should be adopted. If the difference
between consecutive covariance matrices is approximately a
stationary process, the model with non-stationary AR process
prior should be considered. If the covariance matrices are
evolving smoothly over time, local stationarity approximately

holds, and a large number of data samples are provided,
moving average type approaches can be easily implemented.
This is considered in Section IV. The generalized framework
can be summarized in Algorithm 1.

Algorithm 1 Diffusion maps using time evolving statistics
Input: Observations Xt ∈ RN , t = 1, · · · , T , diffusion step

n, neighbourhood size ε, embedding dimension l
Output: Embeddings {Ψl,n(Xt), t = 1, · · · , T}

1: At each time t, estimate a distribution p(Xt|βt) (using
either moving average (MA), Bayesian generative model
with AR process prior (BAR), or Gaussian Process prior
(BGP) to infer βt)

2: Compute the T × T matrix W , where Wt1,t2 =

exp
(
−D(p(X|βt1

)||p(X|βt2
))+D(p(X|βt2

)||p(X|βt1
))

ε

)
3: Set D = diag

{
T∑
τ=1

Wt,τ

}
and compute the normalized

kernel W norm = D−1/2WD−1/2

4: Keep the top ` non-trivial eigenvalues λj and eigenvectors
ϕ̃j ∈ RT of W norm, j = 1, · · · , l, and construct the
corresponding diffusion maps embeding Ψ`,n(Xt) =

(λn1 ϕ̃
t
1, λ

n
2 ϕ̃

t
2, . . . , λ

n
` ϕ̃

t
`)
T

IV. APPLICATIONS

The proposed framework is applied to a toy example and
two real-world applications. In the synthetic example, we
show that the estimated diffusion distance between data points
recovers the geodesic distance on the statistical manifold,
where IGDR [13] is used as a baseline method. In the first
real-world application, we analyze a well-know music piece,
where we estimate the diffusion distance between time points
to discover the intra-piece similarities as a function of time.
In the second application, the proposed framework is used to
discover the different brain states of an epileptic patient based
on EEG recordings.

A. Synthetic Experiment

We assume that the data Xt is generated by a zero-mean
multivariate Gaussian distribution, with time-evolving covari-
ance matrix Σt, constructed from a GP prior as defined in
(24)-(27). We consider observation length T = 500, dimension
N = 5, local latent dimension K = 3, and GP length-scale pa-
rameter τ = 0.02. The goal is to recover the geodesic distance
between data points on the statistical manifold, defined by
their corresponding covariance matrices. Because the pairwise
symmetric KL distance matrix is needed in both the proposed
framework and IGDR, we let both methods know the true
Σt therefore we can focus on the comparison between the
two dimensionality reduction schemes. In other words, in this
experiment we do not estimate Σt from the data, but simply
assume it is known. The purpose of this test is to compare
the diffusion-distance method with IGDR, on the same time-
evolving density function.

We apply diffusion maps with the pairwise affinity ker-
nel defined in (6). We consider n = 200 and obtain the
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low-dimensional embeddings of Xt as defined in (14). The
pairwise geodesic distance between data points can be ap-
proximated by the Euclidean distances between the corre-
sponding embeddings, as shown in Fig. 1(a). On the other
hand, using IGDR, a shortest-path algorithm is executed
to find approximate pairwise geodesic distances, followed
by classical multidimensional scaling (MDS) methods (i.e.,
Laplacian eigenmaps [2]) for dimensionality reduction. The
approximated pairwise geodesic distances are presented in Fig.
1(b) and used as a comparison. As illustrated in Fig. 1, both
methods yield similar distances. However, the running time
of the proposed method is a couple of seconds, whereas the
running time of IGDR is approximately 400 seconds, because
of the O(T 3) complexity required to compute the pairwise
shortest-path distances. These computations were performed
on a computer with 2.2GHz CPU and 8GB RAM, with all
software written in Matlab.

B. Music analysis

In music information retrieval, automatic genre classifica-
tion and composer identification are of increasing interest.
Thus, one goal is to compute similarities between short inter-
vals at different times of a music piece [35]. For comparison
with a previous method, we test our framework on the same
music piece used in [35], “A Day in the Life” from the Beatles’
album Sgt. Pepper’s Lonely Hearts Club Band. The song is
5 minutes 33 seconds long and sampled at 22.05 KHz. The
music piece is divided into 500ms contiguous frames to obtain
Mel Frequency Cepstral Coefficients (MFCCs), which leads
to 667 available frames overall. As depicted in Fig. 2 (a),
40 normalized (i.e., with zero mean) MFCCs are used as
features, yielding Xt ∈ RN , t = 1, . . . , T , where N = 40
and T = 667.

In this application we compare music analysis based on
distances computed directly between MFCC feature vectors,
and based upon the statistics of MFCC features within a
local temporal window. The motivation of this work is that
the local statistics of MFCC features within time moving
windows constitutes a better representation of the similarities
and differences in the music than distances computed directly
on the MFCC features. For the former, we must compute dis-
tances between time-evolving distributions, which motivates
the methods discussed in Section II.

In Fig. 2(a) we plot the frequency content of the frames
of music, as captured via a spectrogram; the spectrogram
frequency content is closely related to the MFCC features. By
modeling the evolution in the statistics of multiple contiguous
frames of frequency content, the hope is that we capture more
specific aspects of the music, than spectral content at one point
in time. Specifically, the frequency spectrum at one time point
may miss statistical aspects of the music captured by frequency
content at neighboring times.

In the proposed model, we assume that the frames have a
time evolving distribution parametrized by Σt, as in (24). The
diagonal elements of Σt denote the energy content in each fre-
quency band at time t, and the off-diagonal elements represent
the correlation between different frequency bands. In music,

we observe that nearby frames in time usually tend to have
similar Σt, whereas, temporally distant frames tend to have
different Σt. Thus, the time evolution of Σt is smooth and
modeled with the GP prior. As described in (21)-(23) and (26)-
(28), the GP piror explicitly encodes this belief and is utilized
to estimate Σt. The length-scale parameter is set to τ = 5,
the number of local factors is set to K = 5, and the other
hyperparamters are set to c0 = d0 = e0 = f0 = σn = 10−3.
Empirically, we find that this model fits the data well and the
performance is relatively insensitive to the parameter settings
(many different parameter settings yielded similar results). A
total of 4000 MCMC iterations are performed, with the first
2000 samples discarded as burn-in. The covariance matrix
Σt is calculated by averaging across the collected samples.
Then the pairwise affinity kernel is computed according to (5)-
(6), the diffusion-map algorithm is applied, and the diffusion
distances are calculated according to (14)-(16).

To demonstrate the advantage of organizing the music inter-
vals based on local statistics, we compare the obtained results
to diffusion maps using pairwise affinity kernel constructed
with Euclidean distances between the MFCC features directly.
Additionally, we compare our method to results from the ker-
nel beta process (KBP) [35]. The KBP does not explicitly learn
an embedding, but rather represents the MFCCs at each time
in terms of a learned dictionary, yielding a low-dimensional
representation. The statistical relationships between pieces of
music are defined by the similarity of dictionary usage. The
KBP approach models each MFCC frame, but imposes that
temporally nearby frames are likely to have similar dictionary
usage. The proposed method explicitly utilizes a time-evolving
covariance matrix; the subspace defined by that covariance ma-
trix is related to the subspace defined by the KBP dictionary-
based method, but the GP model does not explicitly impose
dictionary structure (the covariance is allowed to vary more
freely).

In Figs. 2(b)-(d) we illustrate the intra-piece relationships as
a function of time, based on the three approaches considered.
The results in Figs. 2(b)-(c) were computed via the diffusion-
based embedding, where (b) used the proposed method of
computing distances between data at two points, and (c) used
Euclidian distance between MFCC feature vectors. The results
in Fig. 2(d) were computed by KBP.

In Figs. 2(b)-(c), the relationship between data at times t
and t′ is represented as f(dtt′) = exp(−dtt′δ ), where dtt′

represents diffusion distance, and δ = 10−4. This plots the
relationship between the data on a scale of [0,1]. In Fig. 2(d)
the correlation is shown between the probability of dictionary
usage at times t and t′, as done in [35].

At the website http://youtu.be/XhDz0npyHmg, one may
listen to the music, and examine how the music maps onto
the segmentations and relationships in Figs. 2(b)-(d). It is ev-
ident that diffusion maps based on Euclidian distance applied
directly to the MFCC features, in Fig. 2(c), does not capture
the detailed temporal relational information of the proposed
approach in Fig. 2(b) and of the KBP approach in Fig. 2(d).
Figs. 2(b) and (d) are in good agreement with regard to large-
scale behavior, but the proposed method in (b) appears to
capture more-detailed temporal structure.
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Fig. 1. (a) Normalized diffusion distance between time points. (b) Normalized approximated geodesic distance between time points.

For example, interval [10, 100] seconds consists of a solo,
dominated by human voice, whereas the subinterval [30, 42]
seconds contains a rhythm different from other parts of the
piece. The KBP analysis in Fig. 2(d) is unable to capture the
latter detailed structure, but it is clearly evident in the results of
the proposed algorithm, in Fig. 2(b). The KBP approach seems
to be effective in inferring large-scale temporal relationships,
but not as good at distinguishing localized, fine-scale temporal
differences. The method by which the diffusion analysis is
performed appears to be important, as the results in Fig. 2(c),
in which a simple Euclidian distance was used in the diffusion
kernel, yield relatively poor results, missing most large-scale
and fine-scale details.

To further illustrate this point, we analyze the performance
of the three methods in the short interval [65, 75] seconds
in Fig. 3. As shown in Fig. 3(a), in the interval [68.5, 71.5]
seconds, the human voice harmonics disappear, indicating a
break in the singing. Comparing the corresponding distances in
Figs. 3(b)-(d), we find that diffusion maps using time evolving
statistics capture this break, whereas KBP fails to capture this
break. Although diffusion maps based on Euclidean distances
between the features capture the break, other false breaks are
captured as well. Similar trends and performance can be also
found in the intervals [97, 99] seconds and [223, 225] seconds.

The diffusion mapping formulates an embedding space that
discovers the low-dimensional manifold of the data. Figure 4
depicts two coordinates of the mapping (14) corresponding
to the eigenvectors associated with the largest two non-
trivial eigenvalues. For evaluation, we annotated the song
with markers indicating whether human voice appears. As
depicted in the figure, we find that the second coordinate
correlates with human voice. For instance, we observe that
the second coordinate is significantly large during the interval
[10, 100] seconds, which consists of the voice solo. In addition,
the first coordinate correlates with the overall background
sounds: it takes small values for the first 312 seconds of
the song, and then exhibits a sudden increase when peaky
humming appears. Such information can be utilized to interpret
the similarity between frames and may be used for other
music-analysis tasks. This suggests that the coordinates of

the embedding, i.e., the eigenvectors of the graph, indeed
represent the underlying factors controlling the music. See
http://youtu.be/4uPaLgbMSQw for an audio-visual display of
these results.
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Fig. 4. The two principal eigenvectors as a function of time compared
to human voice activity indicator

C. Epileptic seizure prediction

We now consider epileptic-seizure prediction based on EEG
recordings. It is important and desirable to predict seizures so
that patients can be warned a few minutes prior. Many studies
have been conducted in order to devise reliable methods that
can distinguish interictal and preseizure states [17]. Recent
literature suggests that the correlation between frequency
components of EEG signals indicate the underlying brain state
[36], [37], [38]. However, because EEG recordings tend to
be very noisy, and because the brain activity states and their
relationship to the EEG activities are unknown, it is considered
a difficult problem without existing solutions [9], [39].

In the present work, we consider intracranial EEG (icEEG)
data collected from a patient at the Yale-New Haven Hospital.
Multiple electrode contacts were used during the recording; in
this work, we focus on the contacts located at the seizure onset
area in the right occipital lobe. Discovering the relationships
between different areas will be a subject of future research.
We study four 60-minute long icEEG recordings with a



9

Fr
eq

ue
nc

y 
[k

H
z]

Time [sec]
0 50 100 150 200 250 300

0

2

4

6

8

10

(a)

Time [sec]

Ti
m

e 
[s

ec
]

 

 

50 100 150 200 250 300

50

100

150

200

250

300 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Time [sec]

Ti
m

e 
[s

ec
]

 

 

50 100 150 200 250 300

50

100

150

200

250

300 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Time [sec]

Ti
m

e 
[s

ec
]

 

 

50 100 150 200 250 300

50

100

150

200

250

300
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)

Fig. 2. Analysis results of the song “A Day in the Life”. (a) Spectrogram of the song. (b)-(d) Comparison of the pairwise similarity matrices
obtained by (b) diffusion maps using time evolving statistics, (c) diffusion maps using Euclidean distances between features, and (d) kernel
beta process [35].

sampling rate of 256 Hz, each containing a seizure. A detailed
description of the collected dataset can be found in [39].

Figure 5 presents a 60-minute EEG recording (Fig. 5(a))
and its short time spectrogram (Fig. 5(b)). As shown in
Fig. 5(a), the seizure occurs after about 56 minutes in this
recording, and is visible. However, it is difficult by observation
to notice differences between recording parts that immediately
precede the seizure and parts that are located well before
the seizure. Our goal is, first, to infer a low-dimensional
representation of the recordings, which discovers the intrinsic
states (i.e., the brain activities) of the signal. By relying on
such a representation, we detect anomaly patterns prior to
the seizure onsets (preseizure states) and distinguish them
from samples recorded during resting periods (interictal state),
thereby enabling prediction of seizures.

The short time Fourier transform (STFT) with a 1024
sample window and 512 sample overlap is applied to obtain
features in the frequency domain. The amplitude of frequency
components in Delta (0.5-4 Hz) and Theta (4-8 Hz) bands,

with 0.25 Hz spacing, are collected for each time frame and
used as feature vectors in the following experiments. Thus,
the feature vectors Xt ∈ R32 of the data in the frequency
domain are obtained, as shown in Fig. 5(b). The Beta (13-
25 Hz) and Gamma (25-100 Hz) bands were also included
but empirically showed no significant contribution. In this
experiment, two 5-minute intervals from each recording are
analyzed: one is the 5-minute interval immediately preceding
the seizure onset (preseizure state), and the other is a 5-
minute interval located 40 minutes before the seizure (interictal
state). Therefore, for each 5-minute interval, we have a set
of vectors Xt ∈ RN , t = 1, . . . , T , where N = 32 and
T = 149. The obtained features are centered, and hence, each
Xt is considered as a sample from a zero-mean multivariate
Gaussian distribution N (0N ,Σt).

In this application, unlike the prior knowledge we have in
the music analysis case, we do not have a reliable notion of the
way the covariance matrices are correlated at different times.
Thus, the only belief we can incorporate into the generative
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Fig. 3. Analysis results in the subinterval [65, 75] seconds of the song “A Day in the Life”. (a) Spectrogram of the song. (b)-(d) Comparison
of the pairwise similarity matrices obtained by (b) diffusion maps using time evolving statistics, (c) diffusion maps using Euclidean distances
between features, and (d) kernel beta process [35].
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Fig. 5. (a) A sample recording. The red line marks seizure’s onset,
at approximate 56 minutes. (b) The STFT features of the recording.

model is that Σt are smoothly varying. This information is
encoded in two priors, which are used to estimate Σt: A
Bayesian approach with a latent variable model using a non-
stationary AR process prior (BAR) and an empirical approach

using the moving averaging (MA). The former assumes sta-
tionarity of the differences between consecutive covariance
matrices. The latter assumes local stationarity, i.e., feature
vectors within a small window are generated from the same
Gaussian distribution.

In our experiments, both models (BAR and MA) are used
for covariance matrix estimation in each 5-minute interval. The
BAR model is implemented according to (21)-(23) and (29)-
(31), where the number of local factors is set to K = 5 and the
hyperparameters are set to e0 = f0 = g0 = h0 = 10−3; 4000
MCMC iterations are performed, with the first 2000 discarded
as burn-in. The collection samples are averaged to estimate
Σt. Under the MA model, we simply estimate the covariance
directly based on the features in a local neighborhood in time,
i.e., Σ̂M

t =
∑t+M
s=t−M XsX

T
s /(2M + 1), where 2M + 1

is the length of the window in which local stationarity is
assumed to hold. We need to choose M large enough to
provide an accurate estimate of Σt while small enough to
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avoid smoothing out the local varying statistics. In practice,
we set M = 32 according to an empirical criterion of being
the smallest value that yields sufficient smoothness, formulated

by the admittedly ad hoc criterion:

T∑
t=1
||Σ̂M

t −Σ̂
M+1
t ||

2

T∑
t=1
||Σ̂M

t ||2
≤ 0.05.

Circumventing the need for such criteria is one reason the
BAR approach is considered.

In Fig. 6, we present the obtained embedding (by applying
Algorithm 1) of multiple intervals of an EEG recording (in-
dexed as recording 1) using diffusion maps based on the time-
evolving statistics. We embed three 5-minute intervals: one
preseizure interval and a couple of interictal intervals (located
30 and 40 minutes prior to the seizure onset, respectively).
The presented scatter plot shows the embedded samples in
the space formulated by the 3 principal eigenvectors (setting
` = 3 in (14)), i.e., each 3 dimensional point corresponds to
the diffusion map of a single feature vector Xt.

We observe that under both models (BAR and MA) the
low-dimensional representation separates samples recorded in
the preseizure state (colored red) from samples recorded in
interictal states (colored blue and green). In both Figs. 6(a) and
(b), the embedded samples of the two interictal intervals are
located approximately in the same region, with the embedded
samples of one of the interictal intervals (colored green)
tend slightly towards the embedded samples of the preseizure
interval. This result exemplifies the ability of the proposed
method to discover the underlying states. Indeed, without prior
knowledge of the labeling of the different intervals (preseizure
or interictal) and based merely on the recorded signal, the
proposed method organizes the signal according to the intrinsic
state of the patient.

We remark that the embeddings obtained under MA and
BAR models, in Figs. 6(a) and (b), respectively, are differ-
ent. Under the BAR modeling, the method tends to recover
trajectories with similar evolving patterns due to the strong
time correlation assumption. On the other hand, under the MA
modeling, the method tends to form point clouds resulting
from the local Gaussian distribution assumption.
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Fig. 6. Scatter plots of the embedded samples of three 5-minute
intervals of EEG recording 1. Each point is the diffusion map of the
features of each time frame in the recording, setting ` = 3. The colors
indicate the different intervals. (a) The embedded samples under the
MA modeling. (b) The embedded samples under the BAR modeling.

We now test the consistency and extensibility of the ob-
tained low-dimensional representation. In practice, it is desir-
able to learn the mapping from reference recordings, and then,
when new recordings become available to embed them into the
low-dimensional space in an online fashion in order to identify
and predict seizures.

Figure 7 depicts the embedded samples obtained by ap-
plying Algorithm 2 using recording 1 as the reference set
and recording 2 as the new incoming set. As observed, the
new incoming samples are embedded into the same regions
as the reference samples from corresponding interval types.
For example, we observe in Fig. 7(a) that the new samples
of the interictal state interval are embedded close to the
reference samples of the interictal state interval. In addition,
we observe that the samples of the interictal state intervals
are embedded around the origin, whereas the samples of
the preseizure intervals are embedded further away from
the origin, suggesting that the preseizure state intervals are
“anomalies” that tend to stick out from the learned “normal
state” model. These properties allow for a simple identification
of preseizure samples: preseizure labels can be assigned to
new samples when their corresponding embedded points are
near the region of preseizure reference samples and far from
the origin. As shown in Fig. 7(b), under the BAR modeling,
the embedded points have a different representation. In this
case, the embedded samples from different intervals form
different trajectories. Nevertheless, we can assign labels to new
incoming points in a similar manner - based on their distance
to the reference trajectories of each state.
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Fig. 7. Scatter plots of the embedded samples of four 5-minute
intervals of EEG recordings: two reference intervals (preseizure
and interictal) from recording 1 and two new incoming intervals
(preseizure and interictal) from recording 2. The representation is
obtained using the reference samples and then extended to the new
incoming samples according to Algorithm 2. The dimension of the
embedding is set to ` = 3 for visualization. (a) The obtained
embedding under the MA modeling. (b) The obtained embedding
under the BAR modeling.

From the presented results in Figs. 6 and 7, we conclude
that the proposed method indeed discovers the brain activity
and enables, merely by visualization in 3 dimensions, to
distinguish preseizure states from interictal states. Further-
more, the results imply that the coordinates of the diffusion
embedding, i.e., the eigenvectors of the constructed kernel,
have a real “meaning” in this application. Similarly to the
music application, where the coordinates indicate, for example,
the human voice, here they capture different aspects of the
intrinsic state of the patient. In the present work, we exploit
this representation and devise a simple classification procedure
to identify preseizure states, which enables to predict seizures.
We remark that a simple algorithm is sufficient since the em-
bedding already encodes the required information and enables
to distinguish the different states.

We repeat the experiment described above, and extend the
model to three unseen recordings according to Algorithm 2.
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Algorithm 2 Sequential implementation of diffusion maps
based on time evolving statistics
Input: Reference observations {Xt}, t = 1, · · · , T , new

incoming observations {Xs}, s = 1, · · · , S, diffusion step
n, neighbourhood size ε, dimension `

Output: Embeddings {Ψl,n(Xt)}, t = 1, · · · , T and
{Ψl,n(Xs)}, s = 1, · · · , S

1: Estimate distribution p(Xt|βt) for all time points (using
moving average (MA), Bayesian model with AR process
prior (BAR) or Bayesian model with Gaussian process
prior (BGP) to infer βt)

2: Compute the T × T matrix W , where Wt1,t2 =

exp
(
−D(p(X|βt1 )||p(X|βt2 ))+D(p(X|βt2 )||p(X|βt1 ))

ε

)
3: Apply eigenvalue decomposition to W and keep ` prin-

ciple eigenvalues λj and eigenvectors ϕj
4: For new incoming data Xs, s = 1, · · · , S, estimate the

distribution p(Xs|βs) (using MA, BAR or BGP).
5: Compute the S×T nonsymmetric kernel matrix A, where
As,t = exp

(
−D(p(X|βs)||p(X|βt))

ε

)
6: Construct R = D−1A A, where DA = diag

{
T∑
t=1

As,t

}
7: Construct Ã = RQ−1, where Q = diag

{
T∑
t=1

Rs,t

}
8: Calculate the diffusion maps embeddings of the new

incoming samples Ψ`,n(Xs) = (ψs1, ψ
s
2, . . . , ψ

s
` )
T , where

ψj = 1√
λn
j

Ãϕj

9: Calculate the diffusion maps embeddings of the reference
samples Ψ`,n(Xt) = (λn1ϕ

t
1, λ

n
2ϕ

t
2, . . . , λ

n
` ϕ

t
`)
T

As before, recording 1 is used as reference set to learn the
model, which in turn is extended to the other three recordings
(2-4). In each recording, there is a preseizure state interval
whose T samples are labeled as “preseizure” and an interictal
interval whose T samples are labeled as “interictal”. By using
the labels of the reference samples as training data, we train
standard linear classifiers in the low-dimensional embedding
space to distinguish samples recorded in preseizure states from
samples recorded in interictal states. In our algorithm, the
classification boundary is the hyperplane lying in the middle
of the two empirical means of the embedded reference samples
of each state.

Table I summarizes the detection rate and false alarm rate
of the samples from all the recordings. As can be seen, both
implementations relying on the MA and BAR modeling per-
form well in classifying samples into preseizure and interictal
states. In general, a larger portion of data samples in the
preseizure state interval are correctly identified, while only
a small fraction of data samples in the interictal state are
identified as preseizure state. Further, we find BAR modeling
has an overall higher detection rate while MA has a lower
false alarm rate. One reason is in MA, we assume local
Gaussian distribution of data samples and smooth variation
of controlling parameters, which inhibit sudden changes, thus
reducing the probability of detecting anomaly samples. The
other reason is the Nystrom method used in Algorithm 2 (Step

8) to embed new incoming data samples has the effect of
shrinking coordinates’ amplitude (in the reference set, more
embeddings lie close to the origin than far away from it).
In MA, this causes identifying more new incoming samples
as interictal state because of the reference set, interictal state
samples are embedded around origin (see Fig. 7). While in
BAR, we assume similar evolving patterns of data samples, or-
ganizing samples from two state intervals into two trajectories.
Therefore, identifying states of new incoming data samples is
not effected by the shrinking effect of Nystrom method.

An interesting result is that the large portion of embedded
samples from a preseizure interval actually reside in the
interictal state region. Such a result was observed in other
experiments on human collected data. It implies that during
the preseizure interval, the subject’s brain tries to maintain
the normal state and resist the seizure. As a result, the states
of the samples alternate rapidly between normal and anomaly
states. Thus, to effectively predict seizures, relying on single
samples/time frames is insufficient, and an online algorithm
that aggregates a consecutive group of samples is required.
For example, it is evident from the results in Table I that
tracking the percentage of anomaly samples within a 5-minute
interval may be adequate: if the percentage of anomalies is
greater than a predefined threshold of 0.35, a prediction of
seizure is reported. Designing more sophisticated classification
algorithms and testing them on larger dataset with multiple
subjects will be addressed in future work.

TABLE I
DETECTION RATE AND FALSE ALARM RATE (REPRESENTED AS

PERCENTAGE) OF THE EEG SAMPLES FROM ALL THE RECORDINGS

Model MA BAR
Recording Detection False Alarm Detection False Alarm

1 94.3 26.2 100.0 29.5
2 41.8 20.5 56.0 24.0
3 62.3 19.7 62.3 24.6
4 48.4 19.7 82.8 23.8

V. CONCLUSIONS

A dimensionality-reduction method for high-dimensional
time series is presented. The method exhibits two key compo-
nents. First, multiple approaches to estimate time evolving co-
variance matrices are presented and compared. Second, using
the Kullback-Leibler divergence as a distance metric, diffusion
maps are applied to the probability distributions estimated
from samples, instead of samples themselves, to obtain a low-
dimensional embedding of the high-dimensional time series.
Theoretical and experimental results show that the embedding
inferred by this method discovers the underlying factors, which
govern the observations, and preserves the geodesic distance
between samples on the corresponding statistical manifold. En-
couraging results are obtained in two real-world applications:
music analysis and epileptic seizure prediction. Especially for
the latter application, an online seizure identification system
is developed, showing the possibility of predicting epileptic
seizures based on time evolving statistics of EEG recordings.
In future work, we will propose models capturing higher order
time evolving statistics beyond the covariance matrices.
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isomap nonlinear dimension reduction. In Proceedings of the twenty-first
international conference on Machine learning, page 56. ACM, 2004.

[11] M. Lewandowski, J. Martinez-del Rincon, D. Makris, and J. C. Nebel.
Temporal extension of laplacian eigenmaps for unsupervised dimension-
ality reduction of time series. In Pattern Recognition (ICPR), 2010 20th
International Conference on, pages 161–164. IEEE, 2010.

[12] E. Fox and D. Dunson. Bayesian nonparametric covariance regression.
Arxiv preprint arXiv:1101.2017, 2011.

[13] K. M. Carter, R. Raich, W.G. Finn, and A.O. Hero. Information-
geometric dimensionality reduction. Signal Processing Magazine, IEEE,
28(2):89–99, 2011.

[14] K. M. Carter, R. Raich, W. G. Finn, and A. O. Hero. Fine: Fisher
information nonparametric embedding. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 31(11):2093–2098, 2009.

[15] A. Singer and R. R. Coifman. Non-linear independent component
analysis with diffusion maps. Applied and Computational Harmonic
Analysis, 25(2):226–239, 2008.

[16] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffusion
maps, spectral clustering and reaction coordinates of dynamical systems.
Applied and Computational Harmonic Analysis, 21(1):113–127, 2006.

[17] M. G. Frei, H. P. Zaveri, S. Arthurs, G. K. Bergey, C. C. Jouny,
K. Lehnertz, J. Gotman, I. Osorio, T. I. Netoff, W. J. Freeman, J. Jef-
ferys, G. Worrell, M. Le Van Quyen, S. J. Schiff, and F. Mormann.
Controversies in epilepsy: Debates held during the fourth international
workshop on seizure prediction. Epilepsy and Behavior, 19(1):4 – 16,
2010.

[18] R. Dahlhaus. On the kullback-leibler information divergence of locally
stationary processes. Stochastic Processes and their Applications,
62(1):139–168, 1996.

[19] M. Hein and J. Y. Audibert. Intrinsic dimensionality estimation of
submanifold in rd. L. De Raedt, S. Wrobel (Eds.), Proc. 22nd Int.
Conf. Mach. Learn., ACM, pages 289–296, 2005.

[20] R. R. Coifman, Y. Shkolnisky, F. J. Sigworth, and A. Singer. Graph
laplacian tomography from unknown random projections. IEEE Trans.
Image Process., 17:1891–1899, 2008.

[21] F. R. K. Chung. Spectral Graph Theory. CBMS - American Mathemat-
ical Society, Providence, RI, 1997.

[22] D. Kushnir, A. Haddad, and R. Coifman. Anisotropic diffusion on
sub-manifolds with application to earth structure classification. Appl.
Comput. Harmon. Anal., 32(2):280–294, 2012.

[23] A. Haddad, D. Kushnir, and R. R. Coifman. Texture separation via a
reference set. to appear in Appl. Comput. Harmon. Anal., 2013.

[24] R. Talmon, I. Cohen, S. Gannot, and R.R. Coifman. Supervised graph-
based processing for sequential transient interference suppression. IEEE
Trans. Audio, Speech Lang. Process., 20(9):2528–2538, Nov. 2012.

[25] C. Alexander. Moving average models for volatility and correlation, and
covariance matrices. Handbook of Finance, 2008.

[26] L. Bauwens, S. Laurent, and J. V. Rombouts. Multivariate garch models:
a survey. Journal of applied econometrics, 21(1):79–109, 2006.

[27] R. S. Tsay. Analysis of financial time series, volume 543. Wiley-
Interscience, 2005.

[28] P. Richard Hahn, C. M. Carvalho, and J. G. Scott. A sparse factor
analytic probit model for congressional voting patterns. Journal of the
Royal Statistical Society: Series C (Applied Statistics), 61(4):619–635,
2012.

[29] C. E. Rasmussen. Gaussian processes for machine learning. 2006.
[30] A. Banerjee, D. Dunson, and S. Tokdar. Efficient Gaussian Process

Regression for Large Data Sets. ArXiv e-prints, June 2011.
[31] B. Chen, M. Chen, J. Paisley, A. Zaas, C. Woods, G. Ginsburg, A. Hero,

J. Lucas, D. Dunson, and L. Carin. Bayesian inference of the number of
factors in gene-expression analysis: application to human virus challenge
studies. BMC bioinformatics, 11(1):552, 2010.

[32] H. Ishwaran and J. S. Rao. Spike and slab variable selection: frequentist
and bayesian strategies. Annals of Statistics, pages 730–773, 2005.

[33] A. Armagan, D. Dunson, and J. Lee. Generalized double pareto
shrinkage. arXiv preprint arXiv:1104.0861, 2011.
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