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ABSTRACT
We introduce the convex factorization machine (CFM), which is a

convex variant of the widely used Factorization Machines (FMs).

Speci�cally, we employ a linear+quadratic model and regularize the

linear term with the `2-regularizer and the quadratic term with the

trace norm regularizer. �en, we formulate the CFM optimization

as a semide�nite programming problem and propose an e�cient

optimization procedure with Hazan’s algorithm. A key advantage

of CFM over existing FMs is that it can �nd a globally optimal

solution, while FMs may get a poor locally optimal solution since the

objective function of FMs is non-convex. In addition, the proposed

algorithm is simple yet e�ective and can be implemented easily.

Finally, CFM is a general factorization method and can also be

used for other factorization problems, including multi-view matrix

factorization and tensor completion problems, in various domains

including toxicogenomics and bioinformatics. �rough synthetic

and traditionally used movielens datasets, we �rst show that the

proposed CFM achieves results competitive to FMs. We then show

in a toxicogenomics prediction task that CFM predicts the toxic

outcomes of a collection of drugs be�er than a state-of-the-art

tensor factorization method.

CCS CONCEPTS
•Applied computing→Bioinformatics; •Computingmethod-
ologies →Factorization methods;

KEYWORDS
Factorization Machines, Convex, Toxicogenomics Prediction

ACM Reference format:
Makoto Yamada, Wenzhao Lian, Amit Goyal, Jianhui Chen, Kishan 
Wimalawarne, Suleiman A Khan, Samuel Kaski, Hiroshi Mamitsuka, and Yi 
Chang. 2017. Convex Factorization Machine for Toxicogenomics Predic-

tion. In Proceedings of KDD’17, August 13–17, 2017, Halifax, NS, Canada., 
10 pages.

DOI: h�p://dx.doi.org/10.1145/3097983.3098103

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’17, August 13–17, 2017, Halifax, NS, Canada.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4887-4/17/08. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3097983.3098103

1 INTRODUCTION
In recommendation tasks including movie recommendation and

news article recommendation, the data are represented in a matrix

form, A ∈ R |U |× |I | , where |U | is the number of users and |I | is the

number of items, respectively. Matrix factorization (MF), which

imputes missing entries of a matrix with a low-rank constraint, is

widely used in recommendation systems for news recommenda-

tion, protein-protein interaction prediction, transfer learning, social

media user modeling, multi-view learning, and modeling text docu-

ment collections, among others [12, 14, 24, 27, 33, 48, 50–52, 54].

Moreover, in increasingly complex recommendation and predic-

tion tasks, data sets tend to be represented as multi-view matrices

or tensors with more than two modes [21, 22]. Such methodologies

have been used in various prediction tasks such as toxicogenomics,

bioinformatics, brain activity, chemometrics and temporal sales

prediction [15, 21, 25]. Toxicogenomics is a recent and promising

application domain, where the task is to predict the toxicological

response of the drugs by learning the associations with genomic

pro�les of cells.

Recently, a general framework of MF called the factorization ma-
chines (FMs) has been proposed [35–37]. FMs are applied to many

regression and classi�cation problems, including the display adver-

tising challenge
1
, and they show state-of-the-art performance. �e

key contribution of FMs is that they reformulate recommendation

problems as regression problems, where the input x is a feature

vector that indicates the k-th user and the k ′-th item, and output y
is the rating of the user-item pair:

xi = [

|U |︷                        ︸︸                        ︷
0 · · · 0 1︸︷︷︸

k-th user

0 · · · 0

|I |︷                        ︸︸                        ︷
0 · · · 0 1︸︷︷︸

k ′-th item

0 · · · 0]
> ∈ Rd ,

yi = [A]k,k ′ .

Here,
>

is matrix transpose and d = |U | + |I | is the dimensionality

of x , [A]k,k ′ is the score of the k-th user and k ′-th item, and |A| = n
is the number of non-zero elements. �e goal of FMs is to �nd a

model that predicts y given an input x .

�e following linear + feature interaction model is employed for

FMs:

f (x ;w,G ) = w0 +w
>
0
x +

d∑
`=1

d∑
`′=`+1

д>` д`′x`x`′ ,

where w0 ∈ R, w0 ∈ R
d

, and G = [д1, . . . ,дm] ∈ Rd×m are model

parameters (m � d ). Since only the k-th user and k ′-th item

1
h�ps://www.kaggle.com/c/criteo-display-ad-challenge
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element of the input vector x are non-zero, the model can also be

wri�en as

Âk,k ′ = w0 + [w0]k + [w0] |U |+k ′ + д
>
k д |U |+k ′ ,

which is equivalent to the matrix factorization model with global,

user, and item biases. Moreover, since FMs solve the matrix com-

pletion problem through regression, it is easy to utilize side infor-

mation such as user’s and article’s meta-information by simply

concatenating the meta-information to x .

For regression problems, the model parameters are estimated by

solving the following optimization problem:

min

w0,w ,G

n∑
i=1

(yi− f (xi ;w0,w0,G ))2

+λ1‖w0‖
2

2
+ λ2‖w0‖

2

2
+ λ3‖G‖

2

F ,

where the λ1, λ2, and λ3 are regularization parameters, and ‖G‖F
is the Frobenius norm. In [36], stochastic gradient descent (SGD),

alternating least squares (ALS), and Markov Chain Monte Carlo

(MCMC) based approaches were proposed. �ese optimization ap-

proaches work well in practice if regularization parameters and the

initial solution of parameters are set appropriately. However, since

the loss function is non-convex with respect to G, it can converge

to a poor local optimum (mode). �e MCMC-based approach tends

to obtain a be�er solution than ALS and SGD. However, it requires

running the sampler long enough to explore di�erent local modes.

In this paper, we propose the convex factorization machine (CFM).

We employ the linear+quadratic model, Eq. (1) and estimate w and

W such that the squared loss between the output y and the model

prediction is minimized. More speci�cally, we regularize the linear

parameterw with the `2-regularizer and the quadratic parameterW
with the trace norm regularizer. �en, we formulate the CFM opti-

mization problem as a semide�nite programming problem and solve

it with Hazan’s algorithm [13], which is a Frank-Wolfe algorithm

[11, 18]. A key advantage of the proposed method over existing FMs

is that CFM can �nd a globally optimal solution, while FM can get

poor locally optimal solutions. Moreover, our proposed framework

is a general variant of convex matrix factorization with nuclear

norm regularization, and the CFM algorithm is simple and can be

implemented easily. Finally, since CFM is a general factorization

framework, it can be easily applied to any factorization problems

including multi-view factorization [21] and tensor factorization

[44]. We demonstrate the e�ectiveness of the proposed method

�rst through synthetic and benchmark datasets. �en, we show

that the proposed method outperforms a state-of-the-art multi-view

factorization method on toxicogenomics data.

Contribution: �e contributions of this paper are summarized

below:

• We formulate the FM problem as a semide�nite program-

ming problem, which is a convex formulation.

• We show that the proposed CFM framework includes the

matrix factorization with nuclear norm regularization [19]

as a special case.

• We formulate a Tucker-based tensor completion problem

[43, 44, 46] as a CFM problem. �anks to the formulation,

we can naturally handle large-scale sparse tensor comple-

tion problems. To our knowledge, this is the �rst work.

• We propose a simple yet e�cient optimization procedure

for the semide�nite programming problem using Hazan’s

algorithm [13].

• We applied the proposed CFM to a toxicogenomics predic-

tion task; it outperformed a state-of-the-art method.

2 PROPOSED METHOD
In this section, we propose the convex factorization machine (CFM)

for regression problems
2
.

2.1 Problem Formulation
We suppose that we are given n independent and identically dis-

tributed (i.i.d.) paired samples {(xi ,yi ) | xi ∈ X, yi ∈ Y, i =
1, . . . ,n} drawn from a joint distribution with density p (x ,y). We

denote X = [x1, . . . ,xn] ∈ Rd×n as the input data and y =
[y1, . . . ,yn]

> ∈ Rn as the output real-valued vector.

�e goal of this paper is to �nd a model that predicts y given an

input x .

2.2 Model
We employ the following model:

f (x ;w,W ) = w0 +w
>
0
x +

d∑
`=1

d∑
`′=`+1

[W ]`,`′x`x`′ ,

= w>z+
1

2

tr(W (xx>−diag(x ◦ x ))), (1)

where z = [1 x>]
> ∈ Rd+1

, w = [w0 w>
0

]
> ∈ Rd+1

, W ∈ Rd×d

is a positive semi-de�nite matrix, tr(X ) is the trace operator, ◦

is the elementwise product, and diag(x ) ∈ Rd×d is the diagonal

matrix whose diagonal elements are x . �e di�erence between the

FMs model and Eq. (1) is that д>k дk ′ is parametrized asWk,k ′ . Note

that we implicitly assume thatW is a symmetric matrix in Eq. (1).

Moreover, sinceW is low-rank, the positive semi-de�nite condition

forW is reasonable.

Here, we show that the proposed parametrization makes the

optimization convex under arbitrary loss function. �e model can

equivalently be wri�en as

f (x ;w,W ) = [w> vec(W )>]

[
z

1

2
vec(xx>−diag(x ◦ x ))

]
,

where vec(W ) ∈ Rd
2

is the vectorization operator. Since the model

is a linear model, the optimization problem is jointly convex with

respect to both w and W if we employ a loss function such as

squared loss and logistic loss.

2.3 Optimization problem
We formulate the optimization problem of CFM as a semide�nite

programming problem:

min

w ,W
‖y − f (X ;w,W )‖2

2
+ λ1‖w ‖

2

2

s.t. W � 0 and ‖W ‖tr = η, (2)

where

f (X ;w,W ) = [f (x1;w,W ), . . . , f (xn ;w,W )]> ∈ Rn ,

2
Code available at h�p://www.makotoyamada-ml.com/cfm.html
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and λ1 ≥ 0 and η ≥ 0 are regularization parameters. ‖W ‖tr is the

trace norm de�ned as

‖W ‖tr = tr(
√
W >W ) =

d∑
i=1

σi ,

where σi is the i-th singular value of W . �e trace norm is also

referred to as the nuclear norm [9]. Since the singular values are

non-negative, the trace norm can be regarded as the `1 norm on

singular values. �us, by imposing the trace norm, we can make

W to be low-rank.

To derive a simple yet e�ective optimization algorithm, we �rst

eliminate w from the optimization problem Eq.(2) and convert

the problem to a convex optimization problem with respect to

W . Speci�cally, we take the derivative of the objective function

with respect to w and obtain an analytical solution for w :

w∗ = (ZZ> + λ1Id+1
)−1Z (y − fQ (X ;W )),

where

fQ (X ;W ) = [fQ (x1;W ), . . . , fQ (xn ;W )]> ∈ Rn ,

fQ (x ;W ) =
1

2

tr(W (xx> − diag(x ◦ x ))),

is the model corresponding to the quadratic term of f (x ;w,W ) such

that f (x ;w,W ) = w>z + fQ (x ;W ), Z = [z1, . . . ,zn] ∈ Rd+1×n
,

Id+1
∈ Rd+1×d+1

is the identity matrix. Note that w∗ depends on

the unknown parameterW .

Plugging w∗ back into the objective function of Eq.(2), we can

rewrite the objective function as

min

W
J (W ) s.t.W � 0 and ‖W ‖tr = η, (3)

where

J (W ) = (y − fQ (X ;W ))>C (y − fQ (X ;W )),

C = R>R + λ1H>H , R = In − Z> (ZZ> + λ1Id+1
)−1Z , and H =

(ZZ> + λ1Id+1
)−1Z .

Once Ŵ is obtained by solving Eq. (3), we can get the estimated

linear parameter ŵ as

ŵ = (ZZ> + λ1Id+1
)−1Z (y − fQ (X ;Ŵ )).

Relation to Matrix Factorization with Nuclear Norm Regu-
larization: �e constraint onW can be wri�en as

W =

[
UU> M
M> VV>

]
� 0, tr(UU>) + tr(VV>) = η,

where U ∈ R |U |×m , V ∈ R |I |×m and M = UV> ∈ R |U |× |I | . Fur-

thermore, for the CFM se�ing, the k-th user and k ′-th item rating

is modeled as

[Â]k,k ′ = w0 + [w0]k + [w0] |U |+k ′ + [M]k,k ′ .

Lemma 1. [19] For any non-zero matrixM ∈ Rd×n and η:

‖M ‖tr ≤
η

2

,

i� ∃ symmetric matricesG ∈ Rd×d and H ∈ Rn×n

W =

[
G M
M> H

]
� 0, tr(G ) + tr(H ) = η.

Algorithm 1 CFM with Hazan’s Algorithm

Rescale loss function Jη (W ) = J (ηW ).

InitializeW (1)
, the curvature parameterCf = 1, and the number

of iterations T .

for all t = 0, 1 . . . ,T do
Compute p (t ) = approxEV

(
− ∇Jη (W (t ) ),

Cf
(t+1)2

)
.

α̂t := 2

t+2
(or α̂t = argmin α Jη (W (t ) +α (p (t )p (t )>−W (t ) ))).

W (t+1) =W (t ) + α̂t (p (t )p (t )> −W (t ) ).
end for
return W (T )

.

Based on Lemma 1, the optimization problem Eq. (2) is equivalent

to

min

w ,M
J̃ (w,M ) + λ1‖w ‖

2

2
s.t. ‖M ‖tr ≤

η

2

, (4)

where

J̃ (w,M ) :=
∑

(k,k ′)∈Ω

([A]k,k ′−w0−[w0]k −[w0] |U |+k ′−[M]k,k ′ )
2,

and Ω is the set of observed values in A. If we set w = 0, the

optimization problem is equivalent to the matrix factorization with

nuclear norm regularization [19]; CFM includes convex matrix fac-

torization as a special case. Since we would like to have a low-rank

matrix M of the user-item matrix A for recommendation, Eq. (2)

is a natural formulation for convex FMs. Note that even though

CFM resembles the matrix factorization [19]. the MF method can-

not incorporate side information, while CFM can deal with side-

information by concatenating it to vector x . �at is, intrinsically,

the MF method [19] and CFM are di�erent.

2.4 Hazan’s Algorithm
For optimizingW , we adopt Hazan’s algorithm [13]. It only needs

to compute a leading eigenvector of a sparse d × d matrix in each

iteration, and thus it scales well to large problems. Moreover, the

proposed CFM update formula is extremely simple, and hence useful

for practitioners. �e Hazan’s algorithm for CFM is summarized in

Algorithm 1.

Derivative computation: �e objective function J (W ) can be

equivalently wri�en as

J (W ) =
n∑
i=1

n∑
j=1

Ci j (yi − fQ (xi ;W )) (yj − fQ (x j ;W )).

�en, ∇J (W (t ) ) is given as

∇J (W (t ) ) = XD (t )X>,

where

D (t ) =−diag
*.
,

n∑
j=1

C1j (yj− fQ (x1;W )), . . . ,
n∑
j=1

Cnj (yj− fQ (xn ;W )+/
-
.

Here, we use
∂tr(W xx > )

∂W = xx>. Since the derivative is writ-

ten as XD (t )X>, the eigenvalue decomposition can be obtained
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without storing ∇J (W (t ) ) in memory. Moreover, since the ma-

trix X is a sparse matrix, we can e�ciently obtain the leading

eigenvector by the Lanczos method. We can use a standard eigen-

value decomposition package to compute the approximate eigen-

vector by the “approxEV” function. For example in Matlab, we

can obtain the approximate eigenvector p by the function [p, l] =

eigs(−∇J (W (t ) ), 1,′ LA
′,Options.tol=

Cf
(t+1)2

), where l is the corre-

sponding eigenvalue.

�e proposed CFM optimization requires a matrix inversion (i.e.,

O (n3)) for computing C in D (t )
, and it is not feasible if the dimen-

sionality d is large. For example in user-item recommendation task,

the total dimensionality of the input can be the number of users +

the number of items. In such cases, the dimensionality can be 10
6

or more. However, fortunately, the input matrix X is extremely

sparse, and we can e�ciently compute D (t )
by using a conjugate

gradient method whose time complexity is O (n).

D (t )
can be wri�en as

D (t ) = diag(Cȳ (t ) ) = diag((R>R + λ1H
>H )ȳ (t ) ),

where ȳ (t ) = y− fQ (X ;W (t ) ). Since the number of samplesn tends

to be larger than the dimensionality d in factorization machine

se�ings, ZZ> becomes full rank. Namely, we can safely make the

regularization parameter λ1 = 0. In such case, D (t )
is given as

D (t ) = diag(ȳ (t ) − Z>ŵ (t ) ),

where we use C = R>R = I − Z> (ZZ>)−1Z . �e ŵ (t ) =

(ZZ>)−1Zȳ (t ) is obtained by solving

Z>w = ȳ (t ) , (5)

where w (t )
can be e�ciently obtained by a conjugate gradient

method with time complexity O (n). �us, we can compute D (t )

without computing the matrix inverse (ZZ>)−1
. To further speed

up the conjugate gradient method, we use a preconditioner and the

previous solution w (t−1)
as the initial solution.

Finally, we compute D (t )
as

D (t ) = diag(y − f (X ; ŵ (t ) ,Ŵ (t ) )).

�e diagonal elements of D (t )
are the di�erences between the ob-

served outputs and the model predictions at the t-th iteration. Note

that, in our CFM optimization, we eliminate w and only optimize

forW ; however, the w is implicitly estimated in Hazan’s algorithm.

Complexity: Iteration t in Algorithm 1 includes computing an ap-

proximate leading eigenvector of a sparse matrix with n non-zero

elements and an estimation of w , which require O (n) computa-

tion using Lanczos algorithm and O (n) computation using conju-

gate gradient descent, respectively. �us, the entire computational

complexity of the proposed method is O (Tn), where T is the total

number of iterations in Hazan’s algorithm.

Optimal step size estimation: Hazan’s algorithm assures W
converges to a global optimum with using the step size αt =
2/(2 + t ), t = 0, 1, . . . ,T [19]. However, this is in practice slow

to converge. Instead, we choose the αk that maximally decreases

the objective function J (W ). �e optimal αk can be obtained by

solving the following equation:

α̂t =argmin

α
J (W (t+1) )

=argmin

α





R
(
y− fQ (X ; (1−α )W (t )+αu (t )u (t )>)

)



2

2

.

Taking the derivative with respect to α and solving the problem for

α , we have

α̂t =
(y − fQ (X ;W (t ) ))>R ( fQ (X ;p (t )p (t )

>
−W (t ) ))

‖R ( fQ (X ;p (t )p (t )
>
−W (t ) )‖2

2

. (6)

�e computation of αt involves the matrix inversion of R. However,

by using the same technique as in the derivative computation, we

can e�ciently compute αt .

Update W : When the input dimension d is large, storing the

feature-feature interaction matrixW is not possible. To avoid the

memory problem, we updateW (t )
as

W (t+1) = P (t+1)
diag(λ(t+1) )P (t+1)>,

P (t+1) = [P (t ) p (t )] ∈ Rd×(t+1) ,

λ
(t+1)
k =

{
(1 − α̂t )λ

(t ) (k < t )
α̂t (k = t + 1)

,

where λ(t+1) ∈ Rt+1
. �us, we only need to store P (t+1) ∈

Rd×(t+1)
and λ(t+1)

at the (t + 1)-th iteration. In practice, Hazan’s

algorithm converges with t = 100 (see experiment section), so the

required memory for Hazan’s algorithm is reasonable.

Prediction: Let us de�ne U = Pdiag(λ)1/2 ∈ Rd×t such that

W = UU>. �en, we can e�ciently compute the output as

f (x ;w,W ) = w>z +
1

2

(
‖U>x ‖2

2
− (x ◦ x )> (U ◦U )1

)
.

�e time complexities of the terms are O (d ), O (d (t + 1)), and O (d ),
respectively.

2.5 Tensor completion with CFM
In this section, we formulate a Tucker-based tensor completion

problem [43, 44] as a CFM problem.

Let us denote the input 3-way tensor as Y ∈ Rn1×n2×n3
, where

n1, n2, andn3 are the number of samples in each mode. In this paper,

we consider the following regularization-based learning model:

min

{M (m ) }3m=0

∑
(i, j,k )∈Ω

*
,
[Y]i, j,k − [M (0)

]i, j,k −

3∑
m=1

[M (m)
]i, j,k +

-

2

+ λ
3∑

m=1

‖M
(m)
(m)
‖tr, (7)

where M (0) ∈ Rn1×n2×n3
is the bias tensor, M (m) ∈ Rn1×n2×n3

is the m-th mode tensor, λ ≥ 0 is the regularization parame-

ter, M
(m)
(m)

is the unfolded matrix with respect to the m-th mode,

M
(1)
(1)
∈ Rn1×n2n3

, M
(2)
(2)
∈ Rn2×n1n3

, and M
(3)
(3)
∈ Rn3×n1n2

. �e �nal

goal here is to learn M from Y by minimizing J (M). Now, we

reformulate Eq. (7) by CFM.
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Let us de�ne the pooled matrix:

W =



G1 M
(1)
(1)

M
(1)
(1)

>
H1

G2 M
(2)
(2)

M
(2)
(2)

>
H2

G3 M
(3)
(3)

M
(3)
(3)

>
H3



∈ Rd×d ,

whereW � 0, d =
∑

3

m=1
nm +

∑
3

m=1

∑
3

m′=m+1
nmnm′ . Note that

the o�-diagonal matrices are not important for deriving optimiza-

tion algorithm, and thus, we omit them here. Moreover, since the

matrixW is a positive semi-de�nite matrix, we can decompose it

as

W =



U1

V1

...

U3

V3



[
U>

1
V>

1
. . . U>

3
V>

3

]
.

Lemma 2. [8] For a 3-way tensor case, we have:

[M (1)
]i, j,k = [M

(1)
(1)

]i,n2 (k−1)+j ,

[M (2)
]i, j,k = [M

(2)
(2)

]j,n3 (i−1)+k ,

[M (3)
]i, j,k = [M

(3)
(3)

]k,n1 (j−1)+i .

�en, we can rewrite

∑
3

m=1
[M (m)

]i, j,k as

3∑
m=1

[M (m)
]i, j,k =

1

2

tr

(
W (xi, j,kx

>
i, j,k − diag(xi, j,k ◦ xi, j,k ))

)
,

x
(1)
i, j,k = [

n1︷                     ︸︸                     ︷
0 · · · 0 1︸︷︷︸

i

0 · · · 0

n2n3︷                         ︸︸                         ︷
0 · · · 0 1︸︷︷︸

n2 (k−1)+j

0 · · · 0]
>,

x
(2)
i, j,k = [

n2︷                     ︸︸                     ︷
0 · · · 0 1︸︷︷︸

j

0 · · · 0

n1n3︷                         ︸︸                         ︷
0 · · · 0 1︸︷︷︸

n3 (i−1)+k

0 · · · 0]
>,

x
(3)
i, j,k = [

n3︷                     ︸︸                     ︷
0 · · · 0 1︸︷︷︸

k

0 · · · 0

n1n2︷                        ︸︸                        ︷
0 · · · 0 1︸︷︷︸

n1 (j−1)+i

0 · · · 0]
>,

xi, j,k = [x
(1)
i, j,k

>
x
(2)
i, j,k

>
x
(3)
i, j,k

>
]
> ∈ Rd .

where x
(1)
i, j,k ∈ R

n1+n2n3
, x

(2)
i, j,k ∈ R

n2+n1n3
, and x

(3)
i, j,k ∈ R

n3+n1n2
.

For the bias tensorM (0)
, we parametrize it as

[M (0)
]i, j,k = w

>xi, j,k =



w1

0n2n3

w2

0n1n3

w3

0n1n2



>

xi, j,k , (8)

where w ∈ Rd , w1 ∈ R
n1

, w2 ∈ R
n2

, and w3 ∈ R
n3

. Note we

use this parameterization, since the number of dimension d can be

much bigger than the number of non-zero elements n and it is hard

to solve Eq. (5).

Lemma 3. For the matrices M
(1)
(1)

∈ Rn1×n2n3 ,M
(2)
(2)

∈

Rn2×n1n3 ,M
(3)
(3)
∈ Rn3×n1n2 and η:

3∑
m=1

‖M
(m)
(m)
‖tr ≤

η

2

i�W � 0 and
∑

3

m=1
tr(Gm ) + tr(Hm ) = η.

Proof: See Appendix.

Based on the Lemma 3, we can rewrite the optimization problem

as

min

w ,W

∑
(i, j,k )∈Ω

(
[Y]i, j,k −w

>xi, j,k

−tr

(
W (xi, j,kx

>
i, j,k −diag(xi, j,k ◦ xi, j,k ))

))2

s.t W � 0, tr(W ) = η.

Since this is a CFM problem, we can e�ciently solve it with Hazan’s

algorithm.

3 RELATEDWORK
�e same problem se�ing as in our work has been addressed re-

cently [3] in a lined work (technical report [53]). �e key di�erence

between the proposed method and [3] is that our approach is based

on a single convex optimization problem for the interaction term

W . �e approach [3] uses a block-coordinate descent (BCD) algo-

rithm for optimization, optimizing the linear and quadratic terms

alternatively. �at is, they alternatingly solve the following two

update equations until convergence:

ŵ (t+1) = argmin

w
‖y − f (X ;w,W (t ) )‖2

2
+ λ1‖w ‖

2

2
,

Ŵ (t+1) = argmin

W
‖y − f (X ; ŵ (t+1) ,W )‖2

2
+ λ2‖W ‖tr,

while our proposed approach is simply given as

Ŵ = argmin

W �0

‖R (y − fQ (X ;W ))‖2
2
, s.t. ‖W ‖tr = η.

Hence, the BCD algorithm needs to iterate the sub-problem forW
until convergence for obtaining the globally optimal solution.

If anO (n) algorithm is analyzed for the trace norm minimization

in BCD, then the entire complexity is O (T ′Tn) where T ′ and T are

the number of BCD iterations and the number of the iterations

in sub-problem. On the other hand, our algorithm’s complexity

is O (Tn). Another di�erence is that our optimization approach

includes the matrix factorization with nuclear norm regularization

as a special case, while it is unclear whether the same holds for

the formulation [3]. Finally, our CFM approach is very easy to

implement; the core part of the proposed algorithm can be wri�en

within 20 lines in Matlab. Note also that the BCD based approach is

more general than our CFM framework; it can be used for other loss

functions such as logistic loss and it does not require the positive

de�niteness condition forW .

�e convex variant of matrix factorization has been widely stud-

ied in the machine learning community [2, 6, 10, 20, 28, 42, 43, 45].
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�e key idea of the convex approach is to use the trace norm regu-

larizer, and the optimization problem is given as

M̂ = argmin

M
‖PΩ (A) − PΩ (M )‖2F + λ‖M ‖tr, (9)

where Ω is the set of observed values in A, [PΩ (A)]i, j = [A]i, j if

i, j ∈ Ω and 0 otherwise, and ‖ · ‖F is the Frobenius norm. Since

Eq.(9) and Eq.(4) are equivalent when w = 0, the convex matrix

factorization can be regarded as a special case of CFM.

To optimize Eq. (9), the singular value thresholding (SVT) method

has been proposed [5, 30], where SVT converges faster inO ( 1√
ϵ
) (ϵ

is an approximate error). However, the SVT approach requires solv-

ing the full eigenvalue decomposition, which is computationally

expensive for large datasets. To deal with large data, Frank-Wolfe

based approaches have been proposed including Hazan’s algorithm

[19], corrective re��ing [38], and active subspace selection [16].

However, these approaches cannot incorporate user and item bias.

Furthermore, it is not straightforward to incorporate side informa-

tion to deal with cold start problems (i.e., recommending an item to

a user who has no click information).

To handle cold start problems, collective matrix factorization

(collective MF) has been proposed [40]. �e key idea of collective MF

is to incorporate side information into matrix factorization. More

speci�cally, we prepare a user × user meta matrix (e.g., gender, age,

etc.) and an item × item meta matrix (item category, item title, etc)

in addition to a user-item matrix. �en, we factorize all the matrices

together. A convex variant of CMF called convex collective matrix

factorization (CCMF) has been proposed [4]. CCMF employs the

convex collective norm, which is a generalization of the trace norm

to several matrices. Recently, Hazan’s algorithm was introduced

to CCMF [12]. More importantly, it has been theoretically justi�ed

that CCMF can give be�er performance in cold start se�ings. Since

FMs can incorporate side information, FMs and CCMF are closely

related. Actually, CFM can utilize side information and can learn the

user and item bias term together; it can be regarded as a generalized

variant of CCMF.

4 EXPERIMENTS
In this section, we �rst illustrate the proposed CFM using simple

synthetic data, and then, we validate CFM with Movielens data (sin-

gle matrix), which is a standard recommendation dataset. Finally,

we apply the proposed algorithm for toxicogenomics prediction

task (two-view tensors).

We compare CFM with ridge regression, FM (SGD), FM (MCMC)

and FM (ALS), where FM (MCMC) is a state-of-the-art FM optimiza-

tion method. �e ridge regression corresponds to the factorization

machine with only the linear term f (x ) = w0 + w>
0
x , which is

also a strong baseline. To estimate FM models, we use the publicly

available libFM package
3
. For all experiments, the number of latent

dimensions of FMs is set to 20, which performs well in practice.

For FM (ALS), we experimentally set the regularization parameters

as λ1 = 0 and λ2 = 0.01. �e initial matricesW (for CFM) and G
(for FMs) are randomly set (this is the default se�ing of the libFM

package). For CFM, we implemented the algorithm with Matlab.

We experimentally set Cf = 1, which works for our experiments.

3
h�p://www.libfm.org
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Figure 1: Convergence of themethods: test RMSE of the syn-
thetic experiment. CFM is the proposed convex factoriza-
tion machine, FM (ALS) is the factorization machine with
ALS optimization, and FM (MCMC) is the factorization ma-
chine with MCMC optimization. �e proposed CFM gets
the lowest RMSE values with a small number of iterations,
while FMs needmany iterations to obtain reasonable perfor-
mance.

For all experiments, we use a server with 16 core 1.6GHz CPU and

24G memory.

When evaluating the performance of CFM and FMs, we use the

root mean squared error (RMSE):

√√
1

ntest

ntest∑
i=1

(y∗i − ŷi )
2,

wherey∗ and ŷ are the true and estimated target values, respectively.

4.1 Synthetic Experiment
First, we illustrate how the proposed CFM behaves using a synthetic

dataset.

In this experiment, we randomly generate input vectors x ∈ R100

as x ∼ N (0, I ), and output values as

y = w̃0 + w̃
>x +

d∑
`=1

d∑
`′=`+1

[W̃ ]`,`′x`x`′ ,

where w̃0 ∼ N (0, 1), w̃ ∼ N (0, I ), W̃`,`′ ∼ Uniform([0 1]).
We use 900 samples for training and 100 samples for testing. We

run the experiments 5 times with randomly selecting training and

test samples and report the average RMSE scores. Figure 1 shows

the test RMSE for CFM and FMs. As can be seen, the proposed CFM

gets the lowest RMSE values with a small number of iterations,

while FMs need many iterations to obtain reasonable performance.

4.2 Recommendation Experiments
Next, we evaluate our proposed method on the Movielens 100K, 1M,

10M, and 20M datasets [31]. In these experiments, we randomly

split the observations into 75% for training and 25% for testing.

We run the recommendation experiments on three random splits,
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(a) Movielens 100K data.
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(b) Movielens 1M data.
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(c) Movielens 10M data.
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(d) Movielens 20M data.

Figure 2: RMSE over iteration (t). αt = 1

t train and αt = 1

t test are training and test RMSE with using 2

2+t stepsize. Optimal
αt train and αt test are training and test RMSE with using the optimal stepsize Eq. (6). Overall, the optimal step size based
approach converges faster than the one based on αt = 2

2+t .

10
0

10
2

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Time (seconds)

R
M

S
E

 

 

Optimal α
t
 test

α
t
=1/t test

(a) Movielens 100K data.
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(b) Movielens 1M data.
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(c) Movielens 10M data.
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(d) Movielens 20M data.

Figure 3: RMSE over time (seconds). αt = 1

t test is the test RMSE with using 2

2+t stepsize. Optimal αt test is the test RMSE with
using optimal stepsize. Overall, the optimal step size based approach converges faster than the one based on αt = 2

2+t .

which is the same experimental se�ing as in [3], and report the

average RMSE score.

For CFM, the regularization parameter η is experimentally set to

2000 (for 100K), 4000 (for 1M), 20000 (for 10M), and 40000 (for 20M),

respectively. For FMs, the rank is set to 20, which gives overall

good performance. To investigate the e�ect of the initialization

parameter, we initialize FM (MCMC) with two parameters stdev =

0.05 and stdev = 0.1, which are the standard deviation of the

random variable for initializing G. We also report the RMSE of the

CFM method of [3] for reference. Note that it may be possible to

improve results by extensive hyperparameter searches, but it will

naturally add to computation time.

Figure 2 shows the training and test RMSE with the CFM (optimal

step size) and the CFM (αt =
2

2+t ) for the Movielens datasets. For

both methods, the RMSE of training and test is converging with

a small number of iterations. Overall, the optimal step size based

approach converges faster than the one based on αt =
2

2+t . Figure

3 shows the RMSE over computational time (seconds). For large

datasets, the CFM achieves reasonable performance in less than an

hour. In Table 1, we show the RMSE comparison of the proposed

CFM with FMs. As we expected, CFM compares favorably with

FM (SGD) and FM (ALS), since FM (SGD) and FM (ALS) can be

easily trapped at poor locally optimal solutions. Moreover, our

CFM method compares favorably with also the CFM (BCD) [3]. On

the other hand, FM (MCMC) can obtain be�er performance than

CFMs (both our formulation and [3]) for these datasets if we set

an appropriate initialization parameter. �is is because MCMC

tends to avoid poor locally optimal solution if we run the sampler

long enough. �at is, since the objective function of FMs is non-

convex and it has more �exibility than the convex formulation, it

can converge to a be�er solution than CFM if we initialize FMs

well.

4.3 Prediction in Toxicogenomics
Next, we evaluated our proposed method on a toxicogenomics

dataset [21]. �e dataset contains three sets of matrices represent-

ing gene expression and toxicity responses of a set of drugs. �e

�rst set Gene Expression, represents the di�erential expression of

1106 genes in three di�erent cancer types, to a collection of 78 drugs

(i.e., A
(1)
l ∈ R1106×78, l = 1, 2, 3). �e second set, Toxicity, contains

three dose-dependent toxicity pro�les of the same 78 drugs over

the three cancers (i.e., A
(2)
l ∈ R3×78, l = 1, 2, 3). �e gene expres-

sion data of the three cancers (Blood, Breast and Prostate) come

from the Connectivity Map [26] and were pre-processed to obtain

di�erential expression of treatment vs control. As a result, the

expression scores represent positive or negative regulation with

respect to the untreated level. �e toxicity screening data, from the

NCI-60 database [39], summarizes the toxicity of drug treatments in

three variables GI50, LC50, and TGI, representing the 50% growth

inhibition, 50% lethal concentration, and total growth inhibition

levels. �e data were conformed to represent dose-dependent toxic-

ity pro�les for the doses used in the corresponding gene expression

dataset.
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Table 1: Test RMSE of CFM, CFM (BCD), FMs, and ridge regression for Movielens data sets. �e proposed CFM compares
favorably with CFM (BCD), FMSGD, FMALS, and FM(0.05)

MCMC. FM (MCMC) can obtain better performance than CFMs (both our
formulation and [3]) for these datasets if we set an appropriate initialization parameter.

Dataset CFM CFM (BCD) FMSGD FMALS FM
(0.05)
MCMC

FM
(0.1)
MCMC

Ridge

100K 0.915 0.93 1.078 1.242 0.905 0.901 0.936

1M 0.866 0.85 0.943 0.981 0.877 0.846 0.899

10M 0.810 0.82 0.827 0.873 0.831 0.778 0.855

20M 0.802 n/a 0.821 0.852 0.803 0.768 0.850

Various approaches have been used to study toxicogenomics and

the impact of drugs on cells, including analysis of drug side e�ects

using similarity based approach [41], kernel methods for predicting

drug-targets [17], and factor analysis for modeling dependencies

between drug structures and their gene expression responses [23].

�ese approaches, while interesting in their own right, do not model

the dependencies between toxicity pro�les and the corresponding

post-treatment gene expression.

Predicting both gene and toxicity matrices: We compared our

proposed method with existing state-of-the-art methods. In this ex-

periment, we randomly split the observations into 50% for training

(129, 466 elements) and 50% for testing (129, 465 elements), which is

the exactly same datasets used in [21]. We run the prediction exper-

iments on 100 random splits [21], and report the average relative
MSE score, which is de�ned as

1

V
.

V∑
v=1

‖y∗,v − ŷv ‖2
2

‖y∗,v − ȳ∗,v1‖2
2

,

where y∗,v is the target score vector, ŷv is the estimated score

vector, and ȳ∗,v is the mean of elements in y∗,v , V is the number

of views. In this experiment, the number of views is V = 2. Since

the number of elements in view 1 and view 2 are di�erent, the rela-
tive MSE score is more suitable than the root MSE score. We com-

pared our proposed method with ARDCP [32], CP [7], Group Factor

Analysis (GFA) [49], and Bayesian Multi-view Tensor Factorization

(BMTF) [21]. BMTF is a state-of-the-art multi-view factorization

method.

For CFM, we �rst concatenate all view matrices as

A =



A
(1)
1

A
(2)
1

A
(1)
2

A
(2)
2

A
(1)
3

A
(2)
3



∈ R3327×78,

and use this matrix for learning. �e regularization parameter η is

experimentally set to 1000. To deal with multi-view data, we form

the input and output of CFM as

x = [

3327︷                       ︸︸                       ︷
0 · · · 0 1︸︷︷︸

i-th gene

0 · · · 0

78︷                       ︸︸                       ︷
0 · · · 0 1︸︷︷︸

j-th drug

0 · · · 0

2︷    ︸︸    ︷
1︸︷︷︸

1st view

0]
>,

y = [A]i, j ,

where x ∈ R3407

Table 2 shows the average relative MSE of the methods. As

can be seen, the proposed method outperforms the state-of-the-art

methods.

Predicting toxicity matrices using Gene expression data: We

further evaluated the proposed CFM on the toxicity prediction task.

For this experiment, we randomly split the observations of the

toxicity matrices into 50% for training (341 elements) and 50% for

testing (341 elements). �en, we used the gene expression matrices

A
(1)
1
,A

(1)
2
,A

(1)
3

as side information for predicting the toxicity ma-

trices. More speci�cally, we designed two types of features from

the gene expression data:

• Mean ofm-nearest neighbor similarities (xmean): We

�rst �nd the m-nearest neighbors of the i-th drug target,

where the Gaussian kernel is used for similarity computa-

tion. �en, we average the similarity of 1, . . . ,m-th nearest

neighbors.

• Standard deviation of m-nearest neighbor similari-
ties (xstd): Similarly to the mean feature, we �rst found

m-nearest neighbor similarities and then computed their

standard deviation.

�en, we used these features as

x = [

78︷                      ︸︸                      ︷
0 · · · 0 1︸︷︷︸

i-th drug

0 · · · 0

3︷         ︸︸         ︷
0 1︸︷︷︸
k-th sensit.

0

3︷         ︸︸         ︷
0 1︸︷︷︸
l -th cancer

0

2︷      ︸︸      ︷
xmean x

std
]
>,

y = [A
(2)
l ]i,k ,

where x ∈ R86
.

We run the prediction experiments on 100 random splits, and

report the average RMSE score (Table 3). ‘CFM’ is ‘CFM without

any additional features. It is clear that the performance of CFM

improves by simply adding manually designed features. �us, we

can improve the prediction performance of CFM by designing new

features, and it is useful for various prediction tasks in biology data.

5 CONCLUSION
We proposed the convex factorization machine (CFM), which is a

convex variant of factorization machines (FMs). Speci�cally, we

formulated the CFM optimization problem as a semide�nite pro-

gram (SDP) and solved it with Hazan’s algorithm. A key advantage

of the proposed method over FMs is that CFM can �nd a globally

optimal solution, while FMs can get poor locally optimal solutions

since they are non-convex approaches. �e derived algorithm is

simple and can be easily implemented. �e key di�erence between

the proposed method and another CFM approach [3] is that our

approach is based on a single convex optimization problem for the

interaction termW , while the approach [3] uses a block-coordinate

descent (BCD) algorithm for optimization, optimizing the linear

and quadratic terms alternatively. Moreover, we applied CFM to
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Table 2: Test relative MSE of both gene expression and toxicogenomics data. We compared our proposed method with ARDCP
[32], CP [7], Group Factor Analysis (GFA) [49], and Bayesian Multi-view Tensor Factorization (BMTF) [21]. In the multi-view
algorithms, we usedA(1) andA(2) for factorization, while we used onlyA(2) for the single-view algorithms. �e proposed CFM
outperforms the state-of-the-art methods.

Multi-view Single-view

CFM BMTF GFA ARDCP CP ARDCP CP

Mean 0.4037 0.4811 0.5223 0.8919 5.3713 0.6438 5.0699

StdError 0.0163 0.0061 0.0041 0.0027 0.0310 0.0047 0.0282

Table 3: Test relative MSE on toxicogenomics prediction task. In this task, we used the gene expression matricesA(1)
1
,A

(1)
2
,A

(1)
3

as side information for predicting the toxicity matrices. More speci�cally, we designed two types of features from the gene
expression data, where m is the tuning parameter for the features. We can improve the prediction performance of CFM by
designing new features, and it is useful for various prediction tasks in biology data.

CFM CFM (+mean/std features) CFM (+mean feature)

m = 5 m = 10 m = 15 m = 5 m = 10 m = 15

Mean 0.5624 0.5199 0.5207 0.5215 0.5269 0.5234 0.5231

StdError 0.0501 0.0464 0.0451 0.0450 0.0466 0.0454 0.0450

toxicogenomics prediction task. Finally, we also showed the con-

nections between CFM and convex matrix factorization methods

and CFM and convex tensor completion methods which were not

addressed in [3]. �rough synthetic and real-world experiments, we

showed that the proposed CFM achieves results competitive with

state-of-the-art methods. Moreover, for a toxicogenomics predic-

tion task, CFM outperformed a state-of-the-art multi-view tensor

factorization method.

�ere are several interesting future opportunities. First, since the

proposed CFM is formulated as a Frank-Wolfe algorithm, we can

easily accelerate CFM by using recent results such as [29, 47]. More-

over, employing other optimization techniques such as stochastic

subgradient descent [1, 34] for solving trace norm regularization

would be an interesting direction. Second, we showed the connec-

tion of Tucker decomposition and factorization machines. �at is,

it may be possible to solve other types of tensor decomposition

with factorization machine framework. Finally, applying the pro-

posed algorithm to other biology related tasks is also an interesting

direction of future work.

ACKNOWLEDGMENT
MY was supported by the JST PRESTO program JPMJPR165A and

partly supported by MEXT KAKENHI 16K16114. SK was supported

by the Academy of Finland (Finnish Center of Excellence in Com-

putational Inference Research COIN and grants 292334, 294238,

295503). SAK was supported by Academy of Finland (296516).

HM was supported by FiDiPro, Tekes KAKENHI, and KAKENHI

16H02868.

APPENDIX
Proof of Lemma 3: �is is a variation of the Lemma1 of [19]. From

the characterization:

3∑
m=1

‖M
(m)
(m)
‖tr = min

{UmV >m =M
(m )
(m )
}3m=1

1

2

3∑
m=1

(‖Um ‖F + ‖Vm ‖F )

we have that ∃Um ,Vm ,UmV>m = M
(m)
(m)
,m = 1, 2, 3 s.t.

2

3∑
m=1

‖M
(m)
(m)
‖tr =

3∑
m=1

‖Um ‖
2

F + ‖Vm ‖
2

F

=

3∑
m=1

tr(UmU>m ) + tr(VmV
>
m ) ≤ η.

�at is, we have

W =



U1U>
1

M
(1)
(1)

M
(1)
(1)

>
V1V>

1

U2U>
2

M
(2)
(2)

M
(2)
(2)

>
V2V>

2

U3U>
3

M
(3)
(3)

M
(3)
(3)

>
V3V>

3



,

where tr(W ) ≤ η and W � 0. If s = tr(W ) < η, we can add

(t − s )e1e>
1

to U1U>
1

, and we have tr(W ) = η.

If the matrix is symmetric and positive semi-de�nite, we can

decomposeW as

W =



U1

V1

...

U3

V3



[
U>

1
V>

1
. . . U>

3
V>

3

]
,

such that UmV>m = M
(m)
(m)
,m = 1, 2, 3 and η =

∑
3

m=1
tr(UmU>m ) +

tr(VmV>m ) =
∑

3

m=1
‖Um ‖2F + ‖Vm ‖

2

F . �
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[25] Dana Lahat, Tülay Adali, and Christian Ju�en. 2015. Multimodal data fusion:

an overview of methods, challenges, and prospects. Proc. IEEE 103, 9 (2015),

1449–1477.

[26] Justin Lamb et al. 2006. �e Connectivity Map: Using Gene-Expression Signatures

to Connect Small Molecules, Genes, and Disease. Science 313, 5795 (2006), 1929–

1935. h�ps://doi.org/10.1126/science.1132939

[27] Wenzhao Lian, Piyush Rai, Esther Salazar, and Lawrence Carin. 2015. Integrating

Features and Similarities: Flexible Models for Heterogeneous Multiview Data. In

AAAI.
[28] Yong-Jin Liu, Defeng Sun, and Kim-Chuan Toh. 2012. An implementable proximal

point algorithmic framework for nuclear norm minimization. Mathematical
Pprogramming 133, 1-2 (2012), 399–436.

[29] Francesco Locatello, Rajiv Khanna, Michael Tschannen, and Martin Jaggi. 2017.

A Uni�ed Optimization View on Generalized Matching Pursuit and Frank-Wolfe.

AISTATS (2017).

[30] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. 2010. Spectral regu-

larization algorithms for learning large incomplete matrices. JMLR 11 (2010),

2287–2322.

[31] Bradley N Miller, Istvan Albert, Shyong K Lam, Joseph A Konstan, and John

Riedl. 2003. MovieLens unplugged: Experiences with an occasionally connected

recommender system. In IUI.
[32] Morten Mørup and Lars Kai Hansen. 2009. Automatic relevance determination

for multi-way models. Journal of Chemometrics 23, 7-8 (2009), 352–363.

[33] Weike Pan, Evan Wei Xiang, Nathan Nan Liu, and Qiang Yang. 2010. Transfer

Learning in Collaborative Filtering for Sparsity Reduction.. In AAAI.
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