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Robotic Cable Routing with Spatial Representation
Shiyu Jin1,2, Wenzhao Lian1, Changhao Wang2, Masayoshi Tomizuka2, and Stefan Schaal1

Abstract—Cable routing is a challenging task for robotic
automation. To accomplish the task, it requires a high-level path
planner to generate a sequence of cable configurations from
the initial state to the target state and a low-level manipulation
planner to plan the robot motion commands to transit between
adjacent states. However, there are yet no proper representations
to model the cable with the environment objects, impeding the
design of both high-level path planning and low-level manip-
ulation planning. In this paper, we propose a framework for
cable routing with spatial representation. For high-level planning,
by considering the spatial relations between the cable and the
environment objects such as fixtures, the proposed method is able
to plan a path from the initial state to the goal state in a graph.
For low-level manipulation, multiple manipulation primitives are
efficiently learned from human demonstration, to configure the
cable to planned intermediate states leveraging the same spatial
representation. We also implement a cable state estimator that
robustly extracts the spatial representation from raw RGB-D im-
ages, thus completing the cable routing framework. We evaluate
the proposed framework with various cables and fixture settings,
and demonstrate that it outperforms some baselines in terms of
reliability and generalizability. Experiment videos and details are
available at https://github.com/shiyujin0/cable routing/blob/gh-
pages/index.md.

Index Terms—Manipulation Planning, Deep Learning for Vi-
sual Perception, Deformable Object Manipulation

I. INTRODUCTION

ROBOTIC cable manipulation has a wide range of ap-
plications, such as wire harnessing, thread packing, and

surgical suturing [1]–[3]. While we have seen many studies
in cable manipulation in recent years, robots can achieve only
limited autonomy [4]–[6]. The main difficulty lies in the fact
that cables have infinite degrees of freedom, hindering visual
perception and planning. In addition, cables are under-actuated
with a large action space and may deform to unexpected
shapes during manipulation. These problems become more
challenging for cable routing [7, 8] as it requires both high-
level long-horizon planning and low-level contact-rich ma-
nipulation interacting with the environment objects such as
fixtures.

In this paper, we consider a cable routing task (Fig. 1),
where cables need to follow a designated path constrained by
a set of fixtures on the table. Given randomly placed fixtures
and a goal cable configuration, robots need to manipulate the
cable from an initial configuration to the goal configuration.
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Fig. 1. Cable routing task setup. Two robot manipulators attempt to ma-
nipulate the cable to the goal configuration, which is constrained by several
fixtures, through a sequence of picking, placing, and holding actions.

Sense-plan-act is an effective framework tackling the routing
problem, which consists of 1) visual perception, 2) interme-
diate configuration planning, and 3) low-level manipulation
planning and execution. However, there are multiple practical
challenges preventing this method from being widely adopted.
1) For visual perception, a chain of connected nodes are
commonly used to represent the cable state, where the node
positions are estimated from the point cloud of the cable.
The node estimation is significantly affected by the quality
of the segmented cable point cloud and lacks robustness with
conventionally used color filters [9]–[12] requiring manual
tuning and susceptible to environment lighting changes. 2)
For configuration planning, human demonstrated sequences
composed of intermediate cable states are often needed, and
the robots can finish the task following the predefined se-
quence [13]. Demonstrating the full routing sequence requires
extensive human efforts and does not generalize when the
cable configuration changes. 3) During manipulation, the cable
can easily deform to unexpected shapes. An over-stretched
cable may break the cable or fixtures, while a slack cable
may fail to reach the desired configuration due to the under-
actuated dynamics.

To address the challenges in planning and manipulation,
we propose a simple yet effective representation, called spatial
representation, to model the spatial relations between the cable
and environment objects (namely fixtures). The core insight of
this representation comes from an empirical observation: the
spatial relation between the cable and fixtures, instead of their
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accurate positions, contains the full information relevant to the
routing task. With the proposed spatial representation, configu-
ration planning can be efficiently achieved by searching a path
from the initial to the goal state without the need for human
demonstration. In addition, this representation enables efficient
data collection and model learning for low-level manipulation.
We design three low-level manipulation primitives, stretch,
cross, and insert, to manipulate the cable from one spatial
representation to another. A manipulation primitive takes the
cable state, fixture positions, and the target spatial represen-
tation as input, and outputs picking and placing targets for
robots. The stretch primitive stretches the cable to another
configuration without changing the spatial representation. The
cross and insert primitives change the cable configuration
between two spatial representations. As will be shown in
Sec. V, cable routing with the learned primitives outperforms
rule-based heuristics and achieves reliable performance with
diverse cable and fixture settings.

Besides, to address the robustness and generalization chal-
lenge in visual perception, we propose a cable state estimator
composed of a neural network and non-rigid registration,
which is robust to different cable colors and backgrounds.
Particularly, the cable segmentation neural network is trained
with collected real images and data augmentation without hu-
man annotation. Experiments show the cable state estimation
is robust to different cable colors and backgrounds as long as
the cable and the background have contrasting appearances.

The main contributions presented in this work are summa-
rized as below:
• We proposed a novel cable routing framework built on a

simple yet practical insight: the spatial relation between
the cable and fixtures encodes sufficient information
relevant to the cable routing task. With this novel insight,
we put forward a spatial state representation shared across
all components in our framework.

• We designed multiple learnable manipulation primitives
which, once trained, are able to generate robot commands
to manipulate the cable from one spatial representation
to another. In the meantime, the learned manipulation
primitives are generalizable across different cables.

• To reliably estimate the spatial representation, we pre-
sented a cable mask segmentation neural network fol-
lowed by a designed non-rigid registration step. In ad-
dition, we proposed a self-supervised data generation
method that efficiently synthesized labeled images for
segmentation network training without human annotation.

II. RELATED WORK

A. Vision-based State Estimation of Deformable Linear Ob-
jects

Cable state estimation in a cluttered environment is a
challenging problem as cables, unlike rigid bodies, have
infinite degrees of freedom. Different approaches have been
developed such as sensor-based estimation [14] and model-
based methods [15, 16]. In this section, we focus on vision-
based state estimation approaches. One line of work applies
end-to-end methods without extracting the structure of the

cable, but the representation is not informative for downstream
planning [17]–[20]. Another commonly used approach is color
filtering, which relies on manual tuning and is sensitive to
environmental changes such as lighting conditions [9]–[12].
Though deep neural networks (DNNs) have been widely used
in rigid object detection [21]–[24], few works deploy DNNs
to cable detection. One major reason is that, unlike rigid
bodies, labeling deformable cables is time consuming. [25, 26]
learn the cable detection using synthetic data generated in
simulation. Although their methods do not require a manually
tuned color filter to perceive the cable, there is a large sim-to-
real gap when deployed to real-world tasks. Different from
above, we train a cable segmentation neural network with
collected real images adopting various data augmentation
techniques while still avoiding the need of human annotation.

B. Deformable Linear Object Manipulation

Deformable linear object manipulation has been studied
for decades. A randomized algorithm is proposed to plan a
collision-free path for elastic objects [27], but the object is
not allowed to touch the obstacles in its environment. Minimal-
energy curves are applied to plan paths for deformable linear
objects in stable configurations [28], but it is difficult to find
minimal-energy curves with contact. There are also a lot of
works on knot planning [13, 29, 30] and untangling knots
[31, 32], which deals with self-contact but does not consider
the interaction with the environment.

Different from the above works that do not consider the
environment constraints in the workspace, cable routing re-
quires the cable to establish contact with environment objects
such as fixtures. [33] formulates a trajectory optimization
problem for belt drive unit assembly. [34] generates a visual
plan for cable routing tasks via a casual InfoGAN, but the
method cannot generate discontinuous actions such as the
cable crossing a fixture. [35] proposes a tethered simultaneous
localization and mapping method to estimate the state of
a robot and any intermediate anchor points resulting from
the tether coming into contact with obstacles. [36] analyzes
the contact mobility for cable routing around fixtures, but
their method requires a customized end-effector that allows
the cable to slip. [37] builds a state machine for cable
routing, which requires extensive human efforts to choose the
state machine parameters and lacks generalization to unseen
scenarios. Inspired by [29, 38], which combine topological
planning and manipulation primitives to solve long-horizon
cable knotting tasks, we introduce spatial representation for
cable routing, bridging high-level configuration planning and
low-level primitive execution.

III. PROBLEM STATEMENT

Inspired by the cable routing/USB insertion task in the
Robotic Grasping and Manipulation Challenge in IROS 2020
[7], we formulate a simplified and reconfigurable cable routing
task as follows (Fig. 1). A cable is placed on a worktable with
several fixtures. One end of the cable is rigidly attached to
the table. Given a goal configuration, where the cable makes
contact with the single fixtures or goes through the channel
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Fig. 2. The proposed cable routing framework consists of three modules: 1)
cable state estimation, 2) planning with spatial representation, and 3) learning
manipulation primitives.

fixtures in a particular order (as illustrated in Fig. 1), two
robotic manipulators attempt to manipulate the cable to the
goal configuration through a sequence of picking, placing, and
holding actions. We make the following assumptions on the
task: 1) the number of fixtures and their positions are known
in advance; 2) the parallel-jaw grippers can firmly grasp the
cable during execution; 3) the cable is within the RGB-D
camera’s field-of-view throughout the task; 4) the cable is
distinguishable by color contrast to its background.

Inspired by [29, 38], we decompose the cable routing
problem into three subtasks. 1) Perception. A proper state
representation of the cable needs to be extracted from the raw
RGB-D image. The state extraction has to be robust to the
cable color, background, environment lighting, and the cable
being partially occluded. 2) Planning. Given the current cable
state, positions of the fixtures, and the goal configuration, we
need to generate the next intermediate state. This is expected to
be generated autonomously without human demonstration. 3)
Manipulation. Given the current and next intermediate states,
robot commands such as picking and placing poses need to be
inferred. To prevent the cable from moving to undesired states,
a holding action is introduced after each cable placement as
described in Sec. IV-C1.

IV. APPROACH

We propose a cable routing framework with three modules:
1) cable state estimation, 2) planning with spatial representa-
tion, and 3) learning manipulation primitives (Fig. 2). 1) The
cable state estimation module takes an RGB-D image as the
input and outputs a chain of nodes representing the cable state.
2) The planning module generates a sequence of intermediate
states based on the spatial relation between the estimated cable
state and the known fixtures. These intermediate states define
a path for the cable to reach the goal from the initial configu-
ration. 3) The manipulation primitives generate different robot

(a)

(b)

Fig. 3. (a) Synthesized training images with data augmentation. (b) Corre-
sponding cable segmentation masks.

actions that can manipulate the cable from the current states
to the next intermediate states.

A. Cable State Estimation

1) Segmentation neural network: We propose a self-
supervised data generation method that efficiently generates
labeled images for cable mask segmentation without human
annotation. The idea is to utilize a color filter manually tuned
only once to automatically obtain the cable’s segmentation
mask from a pre-recorded video, in which a unicolor cable
is manipulated randomly to different configurations. Then, the
video frames and the corresponding masks are augmented with
different colors, backgrounds, occlusion, and noise.

Concretely, we choose a cable with a contrasting color (e.g.,
a red cable) distinguished from the background and hand-
design a color filter. We then record a video while an operator
manipulates the cable to different configurations, changes the
background, and adds occlusion. For each video frame, a cable
segmentation mask can be generated automatically with the
color filter. Afterwards we augment the data by randomly
sampling different color distributions and impainting on the
cable’s mask. We apply standard augmentation techniques to
increase robustness for the cable’s mask and the remaining
background, such as dropping out small patches and injecting
pixel-wise noise [39]. Example training images and corre-
sponding segmentation masks can be found in Fig. 3. Finally,
the augmented data, which consists of image and segmentation
mask pairs, is utilized to train a U-Net [21]. The trained U-Net
for cable mask segmentation can be deployed with zero cost
at inference time, removing the need of hand-tuning filters for
each cable.

2) Cable initialization with multi-resolution Reeb Graph:
To facilitate the downstream planning and manipulation, a
chain of nodes is preferred to represent the cable state, as
shown in Fig. 2. With the cable mask obtained via the
segmentation neural network, the corresponding cable point
cloud is retrieved from the depth image. We then construct the
cable nodes from the point cloud with multi-resolution Reeb
Graph [9, 40]. Specifically, the segmented points are grouped
into different clusters, and the cluster centers, i.e., the cable
nodes, are connected to form a smooth path while penalizing
the path length and angle changes.

3) Non-rigid registration: Although cable initialization
with Reeb Graph can handle minor occlusion, it would fail in
practice because of heavy occlusion by the robot arms during
task execution. To tackle this issue, we find the node positions
at the current step X t = [xt

1,x
t
2, ...,x

t
N ] ∈ RN×D with non-rigid



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2022

1 2 3

4

5
6

Fig. 4. An example spatial representation. Red dots 1,2,3,6 are single fixtures.
Red dots 4 and 5 form a channel fixture. The cable from the fixed end to the
loose end is traced following the orange arrows. The green arrows indicate
the projection of fixtures onto the cable. The spatial state for each fixture is
determined by the sign of the cross product between the green and orange
arrows. In this particular example, the spatial representation is (+,-,-,-,+,+).
Intuitively, the spatial representation means that the six fixtures are on the
(right, left, left, left, right, right) side of the cable.

registration, given the node positions from the previous step
X t−1 as a prior, where xt

i is the position of i-th node at t-
th frame, and D is the dimension of node positions (D = 3
in our case). N is the number of nodes, which needs to be
a constant throughout the registration steps (N = 50 in our
experiments). We initialize the cable nodes X0 from the result
of Reeb Graph as described in Sec. IV-A2. For each new
frame, the cable nodes X t can be obtained from the current
point cloud Y t = [yt

1,y
t
2, ...,y

t
M]∈RM×D and X t−1 via Coherent

Point Drift (CPD) [41], where yt
i is the position of i-th point in

the point cloud, M is the number of points in the point cloud,
and usually M >> N.

One of the problems with the registration cables using
CPD is that the registered nodes do not have equal distances
between neighboring nodes. [11] adds a regularization term in
its optimization objective to maintain the local structure. Here
we apply a simpler remedy by connecting the registered nodes
and re-sampling along the connected path to obtain equally
distributed nodes, which is found effective in our experiments.

B. Planning with Spatial Representation
Empirically, we observed that matching the cable nodes

exactly with their correspondences on the goal configuration
is unnecessary. Rather, it is sufficient that the spatial relation
between the cable and the fixtures matches the goal configu-
ration.

We define the spatial representation for cable routing in the
2D horizontal plane. The positions of cable nodes projected in
the horizontal plane are denoted as X̃ = [x̃1, x̃2, ..., x̃N ]∈RN×2.
The fixture positions are denoted as P = [p1, p2, ..., pK ] ∈
RK×2, where K is the number of fixtures. We define two
directional vectors ~vi1 = x̃ j− pi (green arrows in Fig. 4) and
~vi2 = x̃ j+1− x̃ j−1 (orange arrows in Fig. 4), where x j is the
closest nodes to the i-th fixture pi. The spatial representation
for each fixture is then defined with a plus/minus sign, as illus-
trated in Fig. 4. Formally, the spatial states are determined as
s = [s1,s2, · · · ,sK ] ∈ {−1,+1}K , where si = Sign( ~vi1×~vi2

|~vi1×~vi2|
·~ez)

and ~ez is the unit normal of the horizontal plane. Intuitively,
if we trace the cable from the fixed end to the loose end, the
spatial representation indicates whether each fixture is on the
“left” or “right” side of the cable. The channel fixtures are
treated as two single fixtures, e.g., fixture 4 and 5 in the ex-
ample. Fig. 5 demonstrates a few example cable configurations
along with their corresponding spatial states. Note that we do
not consider the scenario where the cable circles around the
fixtures.

Leveraging the proposed representation, a high-level plan-
ner for the long-horizon cable routing tasks can be easily
implemented by only allowing single element changes in the
spatial state s in each step1. Fig. 5 illustrates example paths
and intermediate states searched connecting the initial to the
goal spatial state. In practice, we select the path along which
the spatial state s changes sequentially from the cable’s fixed
end to the tail since it facilitates the downstream manipulation.

C. Learning Manipulation Primitives

In order to manipulate the cable to a desired spatial state,
low-level robot commands such as picking and placing poses
are needed. The low-level planner should be able to handle
different cable configurations as well as diverse fixture loca-
tions.

1) Manipulation primitives: We propose a low-level cable
routing planner with three manipulation primitives, stretch,
cross, and insert, as demonstrated in Fig. 6. Each prim-
itive consists of a pick-move-place action sequence where the
picking and placing actions are constrained to be vertical.
Specifically, in stretch, a robot picks a point on the cable
and stretches the slack cable to establish contact with the
fixtures. In cross, a robot selects one point on the cable
to pick and transports the cable from one side of the fixture
to the other. In insert, a robot picks the cable and inserts
it between two fixtures of the channel.

As shown in Fig. 6, cross and insert change the spatial
state, while stretch does not. The purpose of stretch
is to reshape the cable to robustify cross and insert. In
practice, after each stretch, one robot is holding the cable
at the placing location, while the other robot performs cross
or insert. The holding action is crucial since it prevents
the cable from moving to undesired states during cross
or insert. By iteratively executing stretch-cross or
stretch-insert, robots are able to manipulate the cable
to the desired configuration following the planned path in the
spatial state space.

2) Learning manipulation primitives from labeled data:
Each primitive consists of a picking point and a placing
point. We propose to learn the target points from real data
collected by randomly configuring the cable and fixtures in the
workspace. For each collected RGB-D image, the cable state is
estimated as described in Section IV-A. With the known fixture
locations, we synthesize an image plotting the cable nodes and
fixtures, illustrated in Fig. 7. Based on the prompted target
spatial representation and the current spatial state, humans will
annotate the picking and placing points on the synthesized
image.

Note that only the horizontal 2D positions of the target
points are learned while the height is assumed to be known.
The orientation of the picking point is computed using the
cable nodes’ positions outputted from the cable state estima-
tion, i.e., the yaw angle is the same as the estimated cable
direction at the picking position. The orientation of the placing

1It is feasible, but not reliable to change the spatial relation between the
cable and multiple fixtures with one step of robotic grasping and placing
operations.
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Fig. 5. Planning from the initial spatial representation to the goal spatial representation. Intermediate states are generated along each path, where the spatial
representation vector changes in one and only one dimension at every step.

Stretch

Cross Insert
Fig. 6. Manipulation primitives: (a) In stretch, a robot stretches the slack
cable to establish contact with the fixtures. (b) In cross, a robot transports
the cable from one side of the fixture to the other. (c) In insert, a robot
inserts the cable between two fixtures of the channel. cross and insert
change the spatial state, while stretch does not. The green arrows represent
the picking and placing actions for robots. The orange arrows represent the
orientation of the placing point.

(a) (b) (c) (d)

Fig. 7. Example labeled data for learning manipulation primitives. Cable
nodes (blue dots) and fixtures (red dots) are plotted in a synthesized image.
Humans annotate the picking point as a green star and the placing point as
a green plus. (a) and (b) are demonstration examples for stretch. (c) and
(d) are demonstration examples for across.

point, as shown in Fig. 6, is selected based on the desired
spatial state. Specifically, the placing yaw angles are defined
by the segment connecting the last and the next fixtures for
cross, and by the segment connecting the placing position
and the next fixture for stretch and insert. Learning the
orientation and further, a 6-DoF pose is left to future work.

Two methods are implemented and compared to learn the
target positions. In the first method, direct regression is applied
using a Multilayer Perceptron (MLP) with two fully connected
layers, whose inputs include cable nodes’ positions, fixtures’
positions, and the target spatial state. The output is the

concatenated vector of the 2D picking and placing positions. In
the second method, the cable nodes’ and fixtures’ positions are
encoded in an image as the input to a U-Net [21], and similarly,
the picking and placing target positions are encoded in a
heatmap as the output. During training, the output heatmaps
are constructed by the convolution of the point coordinates
with a Gaussian kernel Φ = exp(− ||p−p∗||2

2σ2 ), where we select
σ = 4 pixels. We hypothesize that outputting target point
heatmaps allows for better spatial generalization than direct
regression on point coordinates. A quantitative analysis on the
two methods will be performed in Sec. V.

V. EXPERIMENTS

We aim to investigate three questions in our real-world
experiments. First, we examine if the proposed framework
based on spatial representations can solve cable routing tasks
with various cables and fixture settings. Second, we evaluate
whether the learned manipulation primitives outperform hand-
designed policies and which learned model performs better.
Third, we inspect whether the perception based cable state
estimator provides reliable estimates for downstream planning
and manipulation.

A. Experimental Setup

As shown in Fig. 1, our system includes two 7-DoF KuKa
IIWA robot manipulators, a Kinect Azure RGB-D camera, two
Robotiq Hand-E grippers, several single and channel fixtures,
and 1 non-stretchable deformable cable. We configured four
routing scenarios with different goal configurations, as shown
in Fig. 8. In each scenario, one end of the cable is rigidly
attached to the table, and the fixtures are fixed on the table
with known positions and orientations. We also conducted
experiments on 7 different cables with varying colors, thick-
nesses, and physical properties, as shown in Fig. 9. We assume
that the cable is within the robots’ workspace throughout task
execution, and collision-free robot motion sequences exist to
manipulate the cable to desired configurations. Solving cable
routing tasks with more dense fixtures and allowing 6-DoF
picking/placing are left to future work.

B. Implementation Details

1) Rule-based manipulation baseline: To evaluate the
learned manipulation primitives, we implemented a rule-based
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Fig. 8. Four experiment scenarios where the fixture setting and target cable
configurations are different.

policy that is composed of the same set of primitives as in
Sec. IV-C1, except that the picking and placing points are
selected according to heuristics. Specifically, we compute the
distance from all cable nodes to the relevant fixture and find
the closest cable node x̃closest to the fixture. The node that is
c nodes away from x̃closest is selected as the picking location,
and the placing location is chosen as d distance away from
the relevant fixture along the desired direction. By tuning c
and d, the rule-based method achieves decent performance in
each specific scenario, but a fixed value pair is found difficult
to generalize. We experimentally set c = 5 and d = 0.05m in
all scenarios.

2) Model learning for manipulation primitives: For each
manipulation primitive, 100 human demonstrations are col-
lected, with varying fixture locations and different start and
end cable configurations. We then annotate the picking and
placing locations for each demonstration. The annotated
dataset is augmented with flipping, rotating, injecting noise,
and node resampling along the cable. Resampling nodes is
crucial to data efficiency as the exact node locations are
irrelevant to the task while the spatial relation between nodes
and the fixtures matters.

3) Parameters for cable state estimation: In the experi-
ments, we use N = 50 nodes to represent approximately 0.8m
long cables. For the cable initialization with multi-resolution
Reeb Graph, voxels of 0.05m resolution are used to group the
point cloud.

C. Results

Table I compares cable routing success rates on the red
rope with differently acquired primitives in all four scenarios
(Fig. 8). In each scenario, there are three single/channel
fixtures. A trial is counted as success only if the goal con-
figuration is achieved between the cable and all three fixtures.
As seen in the table, the rule-based policy does not perform
reliably in different cable and fixture configurations. The re-
gression method achieves decent performance, but its predicted

TABLE I
COMPARISON OF METHODS WITH DIFFERENTLY ACQUIRED PRIMITIVES.

FAILURE MODES: A(OVER-STRETCHING), B(SLACK AND FAILED TO
CROSS), C(FAR-OFF PREDICTION)

Methods Success rate Failure modes

Scenario 1
Rule-based 2/5 A(2), B(1), C(0)
Regression 4/5 A(1), B(0), C(0)
Heatmap 5/5 A(0), B(0), C(0)

Scenario 2
Rule-based 1/5 A(1), B(3), C(0)
Regression 4/5 A(1), B(0), C(0)
Heatmap 4/5 A(0), B(0), C(1)

Scenario 3
Rule-based 1/5 A(4), B(0), C(0)
Regression 3/5 A(0), B(2), C(0)
Heatmap 4/5 A(1), B(0), C(0)

Scenario 4
Rule-based 0/5 A(3), B(2), C(0)
Regression 0/5 A(0), B(5), C(0)
Heatmap 2/5 A(0), B(3), C(0)

Overall
Rule-based 4/20 A(10), B(6), C(0)
Regression 11/20 A(2), B(7), C(0)
Heatmap 15/20 A(1), B(3), C(1)

TABLE II
CABLE ROUTING WITH DIFFERENT CABLES. FAILURE MODES:

A(OVER-STRETCHING), B(SLACK AND FAILED TO CROSS), C(FAR-OFF
PREDICTION), D(WRONGLY ESTIMATED CABLE STATE)

Cables Success rate Failure modes
Rope (red) 5/5 A(0), B(0), C(0), D(0)
Rope (pink) 5/5 A(0), B(0), C(0), D(0)
Rope (lime) 3/5 A(0), B(0), C(0), D(2)
Rope (orange) 4/5 A(0), B(0), C(1), D(0)
Rope (blue) 5/5 A(0), B(0), C(0), D(0)
Thin Rope (red) 3/5 A(0), B(1), C(1), D(0)
USB Cable (red) 3/5 A(0), B(2), C(0), D(0)

target points have a large variance leading to over-stretching or
slack cables. In addition, there are occasions where the cable or
the fixture might break if not interrupted. By contrast, learning
with encoded heatmaps achieves a higher success rate with few
over-stretching or slack cable cases. This suggests that out-
putting heatmaps allows for better spatial generalization than
directly regressing on point coordinates. Fig. 8 shows some
example trials where cables are manipulated to the desired goal
spatial states. It is worthwhile to note that one failure mode of
heatmap prediction is “far-off prediction”, where the predicted
heatmap has similar values across the image. Thus, applying
argmax over the heatmap could result in predicting a pixel
that is distant from the desired location. The reason is that this
particular cable configuration is not close to the configurations
seen in the training data. Increasing the demonstration data
diversity can further improve the performance.

Table II shows the experimental results on different cables
(Fig. 9) with heatmap-based learned primitives. Overall, a
success rate of 28 out of 35 is achieved, showing promising
performance of our cable routing method applied to various
cables. In this experiment, we additionally evaluate the cable
state estimation performance. A state estimate is labeled by
human as “failed” if the chain of estimated nodes does not
visually match the skeleton of the real cable. As summarized
in failure mode D, the cable state estimation succeeds in 33 out
of 35 trials. This illustrates the proposed cable state estimator
is able to detect cables of different colors and thicknesses in
diverse configurations, although only limited data with the red
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(a) (b) (c) (d) (e) (f) (g)

Fig. 9. Cable routing with different cables for the same target spatial state (scenario 1). First row: initial state. Second row: final state. (a) red rope. (b) pink
rope. (c) lime rope. (d) orange rope. (e) blue rope. (f) red thin rope. (g) red USB cable.

rope was accessible during training. The inferred segmentation
mask sometimes contains wrong predictions, especially when
the robot partially occludes the cable. Even with a lower
quality mask prediction, the cable state estimation remains
accurate most times thanks to the cable initialization and node
registration being robust to occlusion and outliers, as shown
in the left plot of Fig. 2.

Note that Table II also reports the performance of the
proposed method with cables of different physical properties,
such as thinner/softer ropes and a USB cable. Although the
dynamics of the unseen cables are different from the trained
thick rope, the stretch primitives and holding actions
with reasonably predicted target points alleviate the effect of
cable dynamics. To further improve the reliability, we suggest
exploring real-time cable tracking and leveraging force/torque
feedback. In addition, higher-bandwidth reactive planning and
execution would help to detect failure modes early and recover
from them.

VI. CONCLUSION AND FUTURE WORK

This work proposes spatial representation for cable rout-
ing, which bridges the high-level long-horizon configuration
planning and the low-level manipulation primitive execution.
A simple configuration planner is implemented with the pro-
posed representation to achieve the desired spatial relationship
between the cable and fixtures. In addition, multiple execution
primitives are designed and learned from the collected data,
including stretching, crossing, and inserting. Real-world ca-
ble routing experiments are conducted with multiple cables,
varying in visual appearances, physical properties, and fixture
settings, demonstrating the method’s effectiveness.

It is noteworthy that our framework is evaluated in simpli-
fied scenarios where the cable is approximately 2D and there is
no heavy occlusion. By virtue of our modular framework, more
sophisticated cable state estimators robust to occlusions and
manipulation primitives reliable in cluttered 3D environments
can be adopted in more complex scenarios. For example, a
cable state tracker modeling the temporal correlations and
manipulation primitives that plan locally to navigate with real-

time updated 3D point clouds, are left as future directions to
explore.
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