Appendix for "Modeling multiple event streams with latent semi-Markov processes"

Wenzhao Lian

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

Vinayak Rao

Department of Statistical Science, Duke University, Durham, NC 27708, USA

Brian Eriksson

Technicolor Research Center, 735 Emerson Street, Palo Alto, CA 94301, USA

Lawrence Carin

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

1. Graphical model

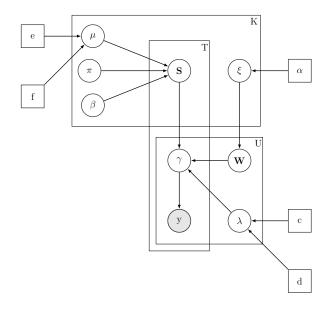


Figure 1. The graphical representation of the proposed model $% \mathcal{F}(\mathcal{F})$

2. Generative process for bsMJP

Algorithm 1 Generative process for a K-dimensional bsMJP path in [0, T]

Input: Hazard function of each state and each latent feature $h_{0k}(\cdot), h_{1k}(\cdot), k = 1, \cdots, K$, constant hazard rates Ω_{0k}, Ω_{1k} , and initial state distribution π_0 .

Output: A K-dimensional sMJP path $\{\phi_k, s_k(\phi_k)\}$

- 1: while $k \in \{1, 2, \cdots, K\}$ do
- 2: Initialize $l_0 = 0, i = 0, \tilde{\phi}_{k,0} = 0, \phi_k = \{\tilde{\phi}_{k,0}\},$ $\tilde{s}_k(\tilde{\phi}_{k,0}) \sim \pi_0,$
- 3: while $\tilde{\phi}_{k,i} < T$ do
- 4: increment i
- 5: Sample $\Delta_i \sim H_{\tilde{s}_k(\tilde{\phi}_{k,i-1}),k}(\cdot)$. Set $\tilde{\phi}_{k,i} = \tilde{\phi}_{k,i-1} + \Delta_i$.
- 6: Draw $\delta \sim \text{Unif}(0,1)$

Set
$$l_i = 0, \tilde{s}_k(\tilde{\phi}_{k,i}) = 1 - \tilde{s}_k(\tilde{\phi}_{k,i-1}), \phi_k = \phi_k \cup \{\tilde{\phi}_{k,i}\}$$

9: else

8:

10:

Set
$$l_i = l_{i-1} + \Delta_{i+1}$$
, $\tilde{s}_k(\phi_{k,i}) = \tilde{s}_k(\phi_{k,i-1})$

11: **end if**

- 12: end while
- 13: $\phi_k = \phi_k \cup \{T\}, \ \{\phi_k, s_k = \tilde{s}_k(t), t \in \phi_k\}$ is a generated bsMJP path.

14: end while

08, USA

LCARIN@DUKE.EDU

WL89@DUKE.EDU

var11@stat.duke.edu

BRIAN.ERIKSSON@TECHNICOLOR.COM