Task-driven Adaptive Sensing on Quadrupole
Mass Filter Systems for Classification

Evan X. Chen, Wenzhao Lian, Lawrence Carin, David J. Brady*
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708
Corresponding author: dbrady@duke.edu

Abstract: An information-theoretical adaptive sensing and classification framework
is proposed for Quadrupole mass filter systems. The proposed algorithm designs the
most discriminative measurement adaptively by maximizing the mutual information
between the class label and the next measurement conditioned on all previous
measurements. The proposed adaptive sensing algorithm significantly reduces the
number of measurements needed and improves classification accuracy compared
with random measurement design. Simulation result on a 76-class mass spectra data
library shows a 100% positive detection rate using only 7% adaptive measurements.
The reduction of measurements shortens the mass analysis time and theoretically can
reduce the required amount of compound material present in the sample for analysis,
which potentially increases the sensitivity of the quadrupole mass filter systems.

1. Introduction

Mass spectrometers are widely considered as the most versatile chemical sensors because of their sensi-
tivity and ability to detect a wide range of chemical and biochemical species [1]. Over the past century,
mass spectrometer systems have been improved tremendously in the aspect of more diverse ion sources
accommodating for different types of materials, various mass analyzers providing different mass range and
resolution, and more efficient ion detectors [1,2]. Most of the above improvements were led by the physics
and hardware design. In the last two decades, with an increasing computation power, a few mass spec-
trometer improvements have been demonstrated by utilizing a combination of hardware modification and
computation processing, including increasing system duty cycle of time of flight systems [3], reducing mass
analysis time of quadrupole ion trap systems [4], and improving throughput and signal to noise (SNR) of
sector systems [5].

Most traditional approaches to mass spectrometer system design involve two separate stages: first, de-
signing the mass spectrometer systems to maximize the fidelity of mass resolution, mass range, SNR, and
throughput, and second, designing an algorithm to extract the relevant information for chemical identifica-
tion/classification from the detected mass spectra. The conventional approaches have shown a disconnection
between the spectrometer system design that achieves the maximum mass spectra fidelity and its final task
of chemical classification using the collected spectra. In this paper, we propose a computational adaptive
sensing framework to address this disconnection through a joint optimization of mass spectrometer design
and computer signal processing. The resulting system is designed to achieve the optimal classification per-
formance, rather than the fidelity of mass spectrometer system.

It has been widely known that under certain sampling constraints, compressive sensing can recover cer-
tain signals from many fewer measurements than Nyquist rate measurements [6—8]. Furthermore, compared
to signal recovery, classification problems requires fewer measurements. A few works exist to design the
optimal sensing strategy for classification problems using information-theoretic approaches, including both



non-adaptive [9] and adaptive [10] schemes. Studies have shown that improved performance can be achieved
when measurements are adapted the underlying signal of interest [10, 11]. Particularly in [10], an adaptive
sensing approach for classification was proposed, i.e., the sensing matrix is designed in a row-wise man-
ner, where each row corresponds to a measurement of a linear projection of the original signal. However,
in physical measurement systems, e.g., the quadrupole mass filter system we are considering, the sensing
matrix has practical physical constraints, i.e., scanning one point at a time. In this paper, we show an optimal
adaptive sensing framework for sequential point scanning classification systems; particularly, we focus on
applying this framework to quadrupole mass filter systems. Similar adaptive sensing algorithms for clas-
sification have been demonstrated in optical spectroscopy [12] and optimal imaging [13]. These methods
have shown significant performance gains compare to conventional systems. However, the adaptive sensing
algorithms in [12, 13] are ad-hoc in nature. Specifically, they first designed an optimal sensing matrix with-
out considering the physical system constraints, and then hard-thresholded the optimized sensing matrix to
binary afterwards to match the physical system constraints, which leads to suboptimal performances. In con-
trast, we integrate the physical constraints in the sensing matrix design step, thus guaranteeing the designed
adaptive sensing matrix to be optimal.

Our developed sensing algorithm designs discriminative measurements by maximizing the mutual infor-
mation between the class label and the next measurement, and it continues using the information that has
been gathered to adaptively choose the next most informative measurement until reaching a classification
confidence level (e.g., 95%). We have applied the proposed algorithm on a 76-class mass spectra library, and
our simulation result shows a 100% positive detection rate using only 7% adaptive measurements. Com-
pared with random measurement design, the adaptive algorithm demonstrates significant reduction in the
number of measurements needed and classification accuracy improvement. The reduction in the number of
required measurements shortens the mass analysis time drastically and theoretically can reduce the required
amount of compound material present in the sample for analysis, which potentially increases the sensitivity
of the quadrupole mass filter systems.

2. Quadrupole Mass Filter Operation Theory

A quadrupole mass filter system is a type mass analyzer widely used in chemistry and biology for compound
classification. It consists of four parallel metal rods as shown in Fig. 1; each opposing pair is connected
together, and a radio frequency signal as in (1) is applied to the two pairs of electrode rods,

V = Upc + Vrr cos(Q). (1)

As a result, the motion of ions in both x and y directions inside the filter follows the solutions of the
Mathieu equation,
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where ry is the distance from the central axis to the surface of any electrode. The ion’s motion in z direction is
unaffected by the potentials on the electrodes. The solution of Mathieu equation has two forms: (i) periodic
and unstable, and (ii) periodic and stable. Physically, a stable solution corresponds to a case where the
displacement of the particle along either x or y direction is finite, and the associated ion particles entering
the mass filter would be transmitted through the device and finally detected by the detector. In contrast, the
ion particles corresponding to the unstable solutions have an unstable trajectory and eventually are filtered
out of the ion beam due to collision with electrodes. The different m/z ions can be divided into stable and



Fig. 1: Schematic of quadrupole mass filter systems.

unstable regions based on a and g values, illustrated by a stability diagram in Fig. 2. The shaded area of the
stability diagram is the region where ion particles are stable in both x and y directions.

The quadrupole mass filter operates in the very top apex region of the shaded area of the stability diagram,
where agpex = 0.237 and g,pex = 0.706. The applied signal V is designed such that only a small band of m/z
is stable and gets through the filter, thus detected by the ion detector. We then rearrange (3) as
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To design one m/z which falls in {@apex, Gapex }, We need to fix the ratio of applied Uy and V,; as
Uqc _ *aapex. (5)
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Without changing the ratio of Uy and V, as in (5), the amplitude of Uy and Vs are sweeped sequentially
to scan the full mass spectrum. The ion signal registered at the detector as function of time is given as
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where x denotes the abundance intensity. We only presented a abbreviated quadrapole mass filter operation
theory, and we refer to [14] and [15] for more details on the topic.

As described, conventional quadrupole mass filter analyzers scan a range of applied voltage sequentially
to produce a full mass spectrum, and perform classification in a separate stage. However, the quadrupole
mass filter can operate in a more flexible fashion, where a set of discrete signals can be applied to obtain a
sequence of discrete m/z measurements. The operation flexibility of quadrupole mass filters provides us an
opportunity to apply more smartly designed sensing algorithms on them, e.g., adaptive sensing.
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Fig. 2: Stability diagram of quadrupole mass filter systems.

3. Adaptive Sensing Model

3.1. Sensing Matrix Design via Maximizing Mutual Information

We are interested in classifying G classes of compounds, and have a set of training data for each com-
pound class. We assume the class labels and features are generated i.i.d. via the following process:
g~ Mult(g,1,w), where w € RE*! is the prior mean on the G classes, and x|g ~ p(x|g), where x € RP*! is
the original signal feature. p(x|g) is the signal distribution for class g, and the marginal distribution for an
observed signal is

G
p(x) =} p(g)p(xlg). (7
g=1
We then model the class-dependent distributions p(x|g) as multivariate Gaussian
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where g, € R? *1 is the mean and X, € RP*P is the covariance matrix of the g-th class Gaussian distribution.
The discretized version of (6) can be formalized as,

y=®x+n ©)

As in (9), we assume that n is zero-mean white Gaussian noise, n ~ N(0,62I). Thus, the measurement
follows a distribution as p(y|x) = N(y; ®x, 6I). In task-driven classification problems, we seek a sensing



matrix @ such that the sensed signal y is most informative/discrimitive identifying the underlying class label
g.

In compressive sensing, we desire to design ® ¢ R4*P where d < P, to minimize the costs (e.g., time,
energy, and money) associated with each measurement. We utilize the mutual information as the feature
selection criteria in the sensing matrix design. Mutual information (10) is a measure of how dependent of
two random variables are, which can be viewed as the reduction of the uncertainty about x by revealing y,

//pxy ( >’}(’))>dxdy (10)

In the signal sensing scenario, where singal recovery is desired, the optimal sensing matrix @ can be de-
signed by finding argmaxel(x;y). In our case, we are concerned about signal classification, and the optimal
sensing matrix @ can be obtained by finding

® = argmaxel(g;y), s.t. @ matches physical constraint. (11

Designing the optimal @ with physical constraints is important; otherwise, ® is theoretically optimal, but it’s
difficult/impossible in actual execution in real physical measurement systems, thus leading to sub-optimal
performances. In this paper, we are concerned about sequential point scanning measurement systems, e.g.,
the quadrupole mass filters. Denote ® = [¢1T ¢kT ¢£]T, where @, is the k-th row of the sensing matrix.
The physical constraint of sequential point scanning measurement systems is @, € {0, 1}!*7 and Zf;l O =1
fork € {1,2,...,d}. Specializing for the sequential point measurement systems, we develop this information-
theoretical adaptive sensing algorithm for classification.

Let y;_y) = D ;_1)x be the previous (known) k — 1 measurements, where ®(;_) [¢1 . ¢,{7 I]T, and
Yk = @,x be the (unknown) next measurement. We want to find the next most mformatlve ¢, that maximizes
the mutual information between the new measurement and the unknown class g € {1, ..., G}, conditioned on
all previous measurements, as

) = argmaxg 1(8;yily(—1))- (12)

The mutual information in (12) can be expanded as [10]
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where H (-) denotes the entropy. The last two terms in (13), H(p(y—1y)) and H(p(y_1)g)), do not depend
on ¢, thus considered as constants and ignored in the optimization step. The first two terms, H(p(yy))) —
H(p(ylg)), need to be maximized. The entropy H(p(y|g) has a closed-form expression [10, 16],

1
H(p(ylg) = 5 (K(1+log(2x)) +log |y, ] (14)

where X 1o <1>(k)>:g<1>5€) + 1. But the entropy H( P(¥(x))) does not yield a closed form expression. We
instead use its upper bound as a surrogate [10, 17],
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Thus, the optimal k-th row of the sensing matrix ¢, can be obtained by solving (13). Because there is a
limited number of choices on @, in our point scanning measurement systems, at the k-th step, we can plug in
all possible @, into equation (13) and choose the one yielding the maximum conditional mutual information



between class label g and y given y_). Then the current belief of label distribution p(g), i.e., p(g|y—1)),
is updated to p(g|y ). i.e., the label distribution after including the newly acquired measurement yy using
the Bayes’ theorem (16).

p(klg)r(8ly 1))
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Then in the next step (k = k+ 1), the most informative measurement can be designed by solving (12) again
based on the updated model. The above adaptive sensing design and classification procedure continuous until
max p(g]y(k)) reaches a confidential threshold (here used 95%) and finally the class label g which yield the
max p(g|y)) is assigned to the unknown measurement.

3.2.  Multivariate Gaussian Distribution Estimation by Probabilistic Principal Component Analysis

Given a set of features X = (x1,...,xy)” belonging to the same class g, the observations {x,} are assumed
to be drawn independently from a multivarate Gaussian distribution, and we can estimate the parameters of
8), e, n 2 and X,, via the maximum likelihood approach. The maximum likelihood estimation (MLE) of
mean and covariance are computed as [18],

N N
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The MLE of mean and covariance matrix of multivariate Gaussian distribution works in sufficient data
scenarios, i.e., N > p. However, in the large p small N setting or the covariance matrix has a low rank
structure, using this direct approach, the estimated covariance matrix is ill-conditioned.

In the scenario we consider, the covariance matrix has a low rank structure, i.e., only a small number of
principle components have significant variance. Therefore, to mitigate the distribution estimation problem.
we use the probabilistic principal component analysis (PPCA) [19]. Specifically, the PPCA constructs the
following model for each multivariate Gaussian distribution

p(x[t) ~ N(Wt+p,0°1), (18)

where W € RP*4 relates the observed variable x and latent variable t € R, with d < p. The latent variable ¢
offers a more parsimonious explanation of the dependencies between observations. The distrubtion over the
latent variables is also Gaussian defined as t ~ N(0,7). Then the marginal distribution for the observed data
x can be obtained by integrating out the latent variables ¢ as,

xNN(#azppca)a (19)

where X,,,., = WTW + 621. Now (19) serves as the distribution for each class, we need to estimate the
distribution parameters including g, W and 6. The MLE of g is the same as in (17). For W, the MLE can
be derived as [19],

Wae = U, (A, — o*D)'/?, (20)

where U, € RP*? are the principal eigenvectors of X, and A, € R7*? is a diagonal matrix with its diagonal
entries corresponding to eigenvalues A1,...,A, of X. Lastly, the maximum likelihood estimation of o’ is
given by [19]
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In above, Wy reflects a mapping from the latent variable space into the principal component subspace
of the observed data space. G,z can be interpreted as the residual averaged over the “lost” principal com-
ponent dimensions.

4. Results and Discussion

We applied our proposed adaptive sensing algorithm on a 76 chemical mass spectrum library, where each
signature (signal vector) has a dimension of p = 373 m/z channels (features). A mass spectrometer system
measures discrete counts of ions, and the measured spectrum can is assumed as Poisson distributed following
convention [20]. Due to the limit access to real mass spectrum measurements, we simulated 1000 realizations
of each class from a Poisson distribution with the real chemical mass spectrum signature as the mean. We
divide the data into 99% for training and the rest 1% for classification testing. The Poisson distributed data
can be reasonably modeled by a Gaussian distribution when the Poisson mean is high [21], and we directly
apply the proposed algorithm to this dataset. In training, the class-dependent distributions are learned via
PPCA.

10000 ;
—
IR 5000*. | | | | | | | .
%0 100 150 200 250 300 350 400 450
~ 10000 ; ; ; ; ; ; ‘
Izlj) 5000? .I \| | L L L L L |
%0 100 15 200 250 300 350 400 450
10000 ; ; ; ; , ; ‘
1i 5000*|| ||I .
%0 100 150 200 250 300 350 400 450
10000 T T T T T T T
1l 5000r | .

%O 100 150 200 250 300 350 400 450
10000 0 T T T T T T

5000F 1

1 | L ! ! ! !

%0 100 150 200 250 300 350 400 450

g 0 ék 1\ 5 T 3 T T 4 T T T ]
% 100 150 200 250 300 350 400 450

m/z

3

g

g=4

0=5

Fig. 3: Spectra signature of 5 chemical classes and the designed adaptive measurements for one realization from class 5.

Fig. 3 illustrates 5 chemical class signatures and the corresponding optimally designed sensing points
for a chemical realization from class 5. First, the algorithm obtains a measurement at m/z = 87, calculates
the posterior of label distribution, and eliminates the possibility of class 1. The algorithm continues the
posterior update and informative measurement design until the posterior converges (e.g., p(g = &) > 0.95
for some g). As seen from Fig. 3, the second and third measurements eliminate the possibility of class 3
and 2, respectively. After the fourth adaptively designed measurement, the algorithm classifies the unknown
chemical as in class 5. As seen from this simple example, the proposed algorithm can identify all 5 classes
by using only a maximum of 4 measurements. In general, the needed number of measurements grows as the



number of classes increases.

The result of applying the proposed algorithm on the 76-class full dataset is shown in Fig. 4, where the
percentage of positive detection (Pd) is plotted as a function of the number of measurements. Mean and
standard deviation over five random training and testing data partitions are reported. We observe that Pd
increases monotoniclly as more measurements are obtained, until it achieves a 100% Pd with 26 measure-
ments, which is about 7% of the total channels measured. Compared with the randomly selected measure-
ments from all m/z channels, our proposed adaptive sensing algorithm performs significantly better, both
in terms of accuracy and the number of measurements needed. The empirical distribution of the number
of measurements needed for this 76-class classification task is shown in Fig. 5. The adaptive sensing al-
gorithm used a maximum at 26 and mean at 12 measurements to achieve 100% Pd. The histogram is left
skewed, which indicates a large portion of testing samples require fewer measurements than the average for
successful classification.
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Fig. 4: 76-class classification results.

Quadrupole mass filter is coupled with a continuous ion source. It requires a continues supply of com-
pound material and ionization until the systems finishes the mass analysis. Our proposed adaptive sensing
algorithm achieves 100% Pd using 7% adaptive measurements, which reduces the mass analysis time by a
factor of 14. This can lead to a significant reduction on the amount of required material in the sample, thus
yielding system sensitivity improvement. Alternatively, due to the reduction of the number of measurements,
we can allocate more time on each informative mass spectrum channel measurement to achieve better SNR
on the mass spectrometer system.

In the above experiment, we have demonstrated the application of the adaptive sensing algorithm on
quadrupole mass filter system. However, the algorithm can be applied to any other sequential point scan-
ning measurement systems for the purpose of classification, including high-field asymmetric waveform
ion mobility spectrometers (FAIMS) [22] and differential mobility spectrometers (DMS) [23]. Similar to
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quadrapole mass filter systems, both FAIMS and DMS operate as bandpass filters, and a RF voltage is
sweeped sequentially to measure the full spectrum [24] and then followed with classification analysis. There-
fore, the proposed adaptive sensing algorithm can be readily applied to both FAIMS and DMS systems to
reduce analysis time and potentially improve sensitivity of the spectrometers.

5. Conclusion

We developed a task-driven adaptive sensing framework on sequential point scanning measurement system
for classification, and demonstrated its application on quadrupole mass filter analyzer systems for faster mass
analysis. Our simulation results have demonstrated a 100% Pd positive detection rate by using only a maxi-
mum of 7% adaptive measurements. The significant measurement reduction can lead to system throughput
or SNR improvements. Future work includes performing adaptive quadruple mass filter experiments in phys-
ical system and exploring the applications of the proposed algorithm to asymmetric waveform ion mobility
spectrometer and differential mobility spectrometers.
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