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Variational Objective
Define Θ = {U (m),W (m),αm, γm}Mm=1. For the multiview classification problem, {βc, {znc}Nn=1}Cc=1 also need to be esti-
mated. Besides, for the ordinal views, we denote the cutpoints asG = {gm}M1

m=1, and the rotation matrix asQ. Throughout the
derivation, we discuss the model for the multiclass classification problem (where we are also given the labels which we denote
by y).

The goal is to minimize KL divergence KL(q(Θ)||p(Θ|X, y,G,Q)), where q(Θ) is a mean field approximation of
p(Θ|X, y,G,Q). This is equivalent to maximizing the evidence lower bound (ELBO) L(q(Θ),G,Q):

L(q(Θ),G,Q) = 〈log p(X, y,Θ)− log q(Θ)〉q(Θ) (1)
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Approximation for ordinal views
Directly maximizing L(q(Θ),G,Q) is intractable, thus further approximation is needed for the first term of (1). Only the
ordinal views are considered in this subsection. For Gaussian (real-valued) and similarity-based views, no such approximation
is needed. The approximation for the ordinal views proceeds as follows:
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m , and Φ(.) is c.d.f. of the normal

distribution. (3) is obtained using Jensen’s inequality, but it can be also derived from Taylor’s expansion, showing the conditions
of the bound’s tightness. As below, (3) can be equivalently expressed using the erf fucntion.∑
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In the above derivation, an approximation using Taylor’s expansion is used. Ignoring the higher order terms of O(x5) for erf
function, we have the approximation in (4); while ignoring the higher order terms of O(x2) for logarithm function, we achieve
the approximation in (5). The final lower bound (6) provides analytical updates of variational parameters for q(Θ). We evaluated
this variational approximation on synthetic data where the cutpoints are available, and we can recover the true cutpoints. Markov
chain Monte Carlo (MCMC) is also used as comparison for ordinal matrix completion problems, and identical performance are
observed. Figure 2(a) in this supplementary material shows the results for the ordinal matrix completion task (questionnaires
responses) on cognitive neuroscience data. We notice that the results (in terms of mean absolute error) based on MCMC and
VB algorithms are pretty similar.

Learning the cutpoints
With the variational objective derived in (1) and (6), we can use Variational EM to learn the variational distribution q(Θ)
(varational E-step), and the point estimates of cutpoints G and rotation matrix Q (varational M-step). Ignoring the constant
terms w.r.t.G, we have the following objective function for the cutpoints.
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In above, Lm is the number of possible ordinal outcomes, andNm
l is the number of data points having value l inm–th view. The

gradients of L̃ml are also analytically available. Because gm0 and gmLm
are fixed to achieve identifiablity, only the gradients with

respect to gml , l = 1, · · · , Lm − 1 are required. Note that the objective fucntion in (9) is concave w.r.t. gm; therefore, in each
variational M-step, the solution ĝm given the variational distributions q(Θ) is global optimal. This constrained optimization
problem (with ordering constraints gml ≤ gml′ , for l < l′) can be solved efficiently using Newton’s method, with the gradient
provided below:

∇gm
l
L̃m(gm) = Nm

l [
1

gml − gml−1
− 1

6
〈γm〉(2gml + gml−1)] +

1

2
〈γm〉

∑
i,j:X

(m)
ij =l

〈Vi〉〈W (m)
:j 〉 (10)

+Nm
l+1[

−1

gml+1 − gml
− 1

6
〈γm〉(2gml + gml+1)] +

1

2
〈γm〉

∑
i,j:Xm

ij =l+1

〈Vi〉〈W (m)
:j 〉

Learning the rotation matrix
At each variational M-step, an unconstrained optimization problem to learn Q is solved to achieve faster convergence. After
rotation, the variational distributions for Vi,W

(m)
:j , αmr,βc are updated as follows.

Ṽi = ViQ
−1 ∼ N (µv,oldQ

−1,Q−TΣv,oldQ
−1) (11)

W̃
(m)
:j = QW

(m)
:j ∼ N (Qµw,old,QΣw,oldQ

T ) (12)

α̃mr ∼ Ga(aα +
1

2
Km, bα +

1

2
QT

:r〈W (m)W (m)>〉Q:r) (13)

β̃c ∼ N (Σ̃β

N∑
i=1

〈zic〉〈V T
i 〉Q−1, Σ̃β) (14)

Σ̃β = (ρIR +Q−T
N∑
i=1

〈V T
i Vi〉Q−1)−1

Ignoring the terms that are constant w.r.t.Q in the variational lower bound, we have the following objective function w.r.t.Q:
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p(Ṽ )

q(Ṽ )
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Inspecting (15) term by term, we have the analytical form as follows.
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Further, we have the gradients w.r.t.Q available in analytical form. IfQ = IR, no rotation is added; with rotation,Q draws q(Θ)
towards the prior p(Θ) because (15) effective minimizes KL(q(Θ)||p(Θ)) while not affecting the likelihood term p(X|Θ).
The solution of this unconstrained optimization problem is guaranteed to increase the variational lower bound.

Updating variational distributions
We use a mean field approximation to learn the variational distributions q(Θ):
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Update βc and zi for classification task.
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In above, u ∼ N (0, 1). φ(.) and Φ(.) denote the p.d.f. and c.d.f. for normal distribution respectively.

Out-of-sample prediction
For out-of-sample data point(s) X∗, we would like to infer q(V∗) ≈ p(V∗|X(1)
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For ordinal feature views, (38) is used, where the likelihood term p(X
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Combining (42) and (43), we have q(V∗) ≈ p(V∗|X(M1+M2+1)
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∗ ), which is a Gaussian distribution.
Finally, combing the ordinal, real (Gaussian), and similarity-based views in a sequential manner (dealing with feature views
first and using this posterior as the prior for the similarity-based views), we get the overall out-of-sample prediction for V∗:

q(V∗) = N (µv,Σv) (44)
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Streaming extension
In the setting where data points are observed in a streaming fashion, we need to update local variables for newly observed
data {V∗,U (m)

∗ , z∗}, and global variables {W (m), αmr,βc}. The hyperparameter γm is fixed at a reasonable estimate for
simplicity, which can also be updated similarly to the batch setting.

Local variables
As derived in Section , treating each newly observed exampleX∗ (having some or all the views) as an out-of-sample point, we
have the variational estimate q(U (m)

∗ ) for m = M1 + M2 + 1, · · · ,M1 + M2 + M3, and q(V∗), provided in (42) and (44).
Further, We can natually update z∗ following (35).

Global variables
Once the local variable distributions are learned, we can update the global variables Θg = {W (m), αmr,βc}, based on
q(Θg

n+1) ∝ q(Θg
n)p(X∗|Θg

n).
Specifically, we can updateW (m)

:j for similarity-based views as follows (updates for feature-based views have a similar form

by replacing U (m)
∗ , as in the previous section.
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Updating αmr is the same as batch setting in (23) because q(αmr) does not directly depend on local variables.
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Figure 1: Steaming Extension

We can also update the classifier βc. Computational speed-up details are not discussed here, which includes avoiding matrix
inversions for each new observation.

q(βc) = N (µβ,n,Σβ,n)→ N (µβ,n+1,Σβ,n+1) (46)

Σβ,n+1 = (Σ−1β,n + 〈V T
∗ V∗〉)−1

µβ,n+1 = Σβ,n+1(Σ−1β,nµβ,n + 〈z∗c〉〈V T
∗ 〉)

Experiments
We demonstrate MLFS in a streaming setting, revisiting the Digits data classification experiment for: (i) MLFS with batch
inference with a training set of 500 examples, (ii) MLFS with streaming inference, processing one example at a time (for
various choices of the initial pool size I) and doing only a single pass over the data. Figure 1 shows the average accuracy
changing with number of visited examples increasing, run with 10 data splits. While it is unreasonable to expect that a truly
streaming algorithm (seeing each example just once) will outperform its batch counterpart, it attains reasonably competitive
accuracies even when running with very small initial pool sizes.

Additional results for cognitive neuroscience data
Here, we include some additional results on the cognitive neuroscience data for two tasks: matrix completion of ordinal re-
sponses (questionnaires data), and prediction of fMRI responses. For the first task, Figure 2 (a)shows the average mean absolute
error (MAE) for different percentage of missingness over 10 runs considering three scenarios: (i) MLFS fitted using the pro-
posed VB algorithm, (ii) MLFS fitted using MCMC, and (iii) MLFS fitted using the proposed VB algorithm but considering
all the ordinal views concatenated as a single ordinal matrix. We used an unoptimized MATLAB implementation and our VB
based inference method converged in about 10 iterations (in terms of variational lower bound). As we can see, for MLFS with
all the views, our VB result is competitive to MCMC; moreover, both outperform the baseline of concatenating all the ordinal
views. For the second task to predict fMRI responses leveraging information from other views, Figure 2(b) shows a plot of
observed vs. predicted values. The points roughly follow a straight line indicating good predictions.
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Figure 2: (a) Average mean absolute error (MAE) for the ordinal responses over 10 runs as a function of the fraction of missing data. Error
bars indicate the standard deviation around the mean. (b) Observed vs. predicted fMRI values (amygdala and VS) from 30% of the subjects.
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